



Tutorial: Data-analytics based orchestration



Albert Banchs Professor, Carlos III University of Madrid Deputy Director, IMDEA Networks institute

Acknowledgement: The material of this tutorial and keynote speech has been based on the work that the presenter is doing in the H2020 5G-TOURS European project (Grant Agreement No. 856950).

## **5GPhD** School The International Extentility Extent to be International

## **Tutorial outline**

- Network slicing
- Network Softwarization
- Network orchestration
- Data analytics and AI

# 

## **Tutorial outline**

- Network slicing
- Network Softwarization
- Network orchestration
- Data analytics and AI





## **5GPhD** School The Interventional Restoration to Bit Interventional

## What is network slicing?

- Network Slice: A set of infrastructure resources and service functions that has attributes specifically designed to meet the needs of an industry vertical or a service
- Network Slicing: A management mechanism that Network Slice Provider can use to allocate dedicated infrastructure resources and service functions to the user of the Network Slice
- 3GPP definition:
  - "A logical network that provides specific network capabilities and network characteristics"
  - "A network created by the operator customized to provide an optimized solution for a specific market scenario which demands specific requirements with end to end scope"
  - Implemented by "slice instances"
  - Created from a "network slice template"





## Network slice types

- Enhanced Mobile Broadband (eMBB) to deal with hugely increased data volumes, overall data capacity and user density
- Massive Machine-type Communications (mMTC) for the IoT, requiring low power consumption and low data rates for very large numbers of connected devices
- Ultra-reliable and Low Latency Communications (URLLC) to cater for safety-critical and mission critical applications



| 5GPhD School<br>To interventional Eclarities Events                                                                                                                                                  |                 |                 |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|--|--|
| Network Slices vs. Network Slice Instances                                                                                                                                                           |                 |                 |  |  |
|                                                                                                                                                                                                      |                 |                 |  |  |
| Network slice 1                                                                                                                                                                                      | Network slice 2 | Network slice 3 |  |  |
| Legend:       Network slice instances         Network functions                                                                                                                                      |                 |                 |  |  |
| <ul> <li>Network Slice: A logical network that provides specific network capabilities and network characteristics.</li> </ul>                                                                        |                 |                 |  |  |
| <ul> <li>Network Slice instance: A set of Network Function instances and the required resources (e.g. compute,<br/>storage and networking resources) which form a deployed Network Slice.</li> </ul> |                 |                 |  |  |









### 5GPhD School The Internetional Extendities Events Extended to School

## Benefits of NFV

- Reduced equipment costs and reduced power consumption through consolidating equipment and exploiting the economies of scale of the IT industry
- Increased velocity of Time to Market by minimizing the typical network operator cycle of innovation
- Much more efficient test and integration
  - Production, test and reference facilities can be run on the same infrastructure
- Targeted service introduction based on geography or customer sets is possible
  - Services can be rapidly scaled up/down as required
  - Service velocity is improved by provisioning remotely

| <b>5</b><br>The interventional Extendity Event Exception to Bill Interventional Extendity Event Exception to Bill Intervention |     |                         |
|--------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------|
| Virtualizing Network Functions                                                                                                 |     |                         |
| NF1 NF2 NF3 NF4<br>"decoding" "scheduling" "authentication"                                                                    | NF5 | Network Fucntions (NFs) |
|                                                                                                                                | 17  |                         |















## **5G**PhD School The Interventional Scientific Front Economics to BE Interventional

#### **Motivation**

- SDN and NFV have brought a revolutionary paradigm on network management
- This allows for enhanced network features but increases the complexity for the management of the network
- Moreover, new management functionality has to be provided
  - Network function placement
  - Resource orchestration
- Therefore, the management system in 5G needs to be heavily revisited

# 5GPhD School

### Management and Orchestration

- Also known as MANO or M&O
- Management
  - Network Function Selection
  - Network Function Configuration
  - Network Function Chaining
- Orchestration
  - Network Function Placement
  - Resource Allocation
  - Including both cloud and RAN resources

#### 5GP School dilic Event Composion to 66 Holy The Intern High-level NFV framework Virtualized Network Functions (VNFs) **Services** VNF VNF VNF VNF NFV Infrastructure (NFVI) NFV Management Virtual Virtual Storage Virtual Networ Virtual Compute resources Orchestration Virtualization Layer **Physical** Network Compute Storage resources Hardware resources



## **5GPhD** School The Interventional Restanting To Bell

## Service and Resource Orchestration

- 5G Networks relies on two different kind of orchestration
- Resource orchestration
  - Assignment to each slice of the needed resources
  - Proper configuration of the associated resources (i.e., spectrum)
  - No understanding of the "semantic" of the deployed VNFs
  - The underlying topology is also out of the scope of resource orchestration
- Service orchestration
  - Understanding the service needed by the slice and translate it into VNFs
  - Also their chaining and relation shall be provided

## 5GPhD School

### End-to-end service Orchestration

- To orchestrate an end-to-end service, the NFV Orchestrator (NFVO) instantiates the network slice as follows:
  - It issues the corresponding requests to the Software-Defined Networking (SDN) controller to instantiate connections between the different network nodes
  - It requests the Virtualized Infrastructure Manager (VIM) to reserve the virtual resources at the different network nodes
  - It commands the Virtual Network Function Manager (VNFM) to instantiate the VNFs
  - It configures the VNFs and PNFs (Physical Network Functions)





# **5GPhD** School

### Shared and non-shared NFs

- A NSI may contain functions that are shared among network slice instances (NSIs), while other are dedicated
  - For example, a shared AMF (Access Management Function)
- When creating a new NSI, we check if there are existing shared network functions that can be used for creation of a new NSI
  - In this case they become shared NFs
  - In the case some shared network functions are available, only additional (non-shared) network functions may need to be created
  - The existing shared network functions may need to be reconfigured, and the resources supporting them
    may need to be added to ensure that all NSI(s) can be served
  - In the case where no existing network functions are available for the new NSI, both the shared and the non shared shall be created
    - The new shared are just "shareable"
    - They only belong to the new single NSI at this point until being shared by other NSIs (where they become "shared")

## **5GPhD**School The Interventional Scientific Event Econoperior no 52 Indep

## **Tutorial outline**

- Network slicing
- Network Softwarization
- Network orchestration
- Data analytics and AI

## **5GPhD** School The Interventional Extend to First Extension to BE Intervention

### Artificial intelligence & data analytics

- Al is a computation paradigm that endows machines with intelligence
  - Aiming to teach them how to work, react, and learn like humans
  - Many techniques fall under this broad umbrella
- Machine learning enables the artificial processes to absorb knowledge from data and make decisions without being explicitly programmed
  - Data needs to be collected and made availably to AI algorithms
  - Machine learning is closely related to data analytics
- Machine learning has become very popular driven by:
  - Modern challenges are "high-dimensional" in nature
  - We have rich data sources and processing power that can be use to solve problems
  - Machine learning can be integrated into working software to support products demanded by industry
- In line with the rising popularity of machine learning, this tool is being widely used for many networking problems including 5G

# 5GPhD School

## Data analytics and Artificial Intelligence for Orchestration

- Artificial Intelligence is a natural choice for driving orchestration decision
  - We need to make predictions, classifications and decisions based on data
- 3GPP has identified this and started efforts towards defining an AI-based Data Analytics
  - Autonomous and efficient control, management and orchestration
- Modules defined by 3GPP to this end
  - Network Data Analytics Function (NWDAF)
  - Management Data Analytics Function (MDAF)
- Standardization efforts are still ongoing
  - There is no current full-blown data analytics-assisted architecture ready

#### 5GPI School un ta 66 likely Al-based data Analytics framework Mobile Network Service layer Operator (MNO) High-level policies AI/ML algorithms AI-based data Intent-based NWDAF analytics framework MDAF networking VIM NFVI State VNF Decisions info info info info NFVO VNFM VIM NFVI ETSI MANO Network data & recommendations 3GPP 5G NSMF NSSF PCF NRF CSMF System (5GS) Control plane Management plane

### **EGPhD** School The International Extentile Event Exception in SE Tray

## Data analytics for the control plane

- In the control plane, analytics allow NFs to optimize their behavior at run-time, typically at a much faster speed than what network management and orchestration systems allow
- NWDAF analytics can be leveraged to improve
  - Slice-level load balancing
  - Service experience and Quality of Experience (QoE)
- Examples of data analytics usage
  - NSSF: Selecting the set of Network Slice instances serving a UE
  - PCF: Unified policy framework to govern network behavior, including the QoS parameters
  - NRF: Selection of a NF instance when a certain NF type is needed

## **5GPhD** School The Interventional Restoration to Be Interventional

## Examples of data analytics for the control plane

- NSSF: Slice selection
  - NWDAF: monitors both load status and service experience statistics and predictions
  - Slice selection and load control functionality to decide which slice optimally serves each of the new UEs arriving in the network
- PCF: QoS control
  - Informed by NWDAF analytics on UE and application service experience
  - Adapt service QoS parameters across all UEs on a slice in such a way that the slice SLA is satisfied.
- NRF: Selection of NF instance
  - Keep NF profile of all NFs belonging to a slice, including their instantaneous load
  - Pre-selection step so that not only instantaneous NF load is taken into account, but also statistics and predictions
  - Load balancing is embedded in the selection process of the new NF instance among the candidate set

## 5GPhD School

### Data analytics for the management plane

- Data used as input by the AI-based analytics framework
  - NFV Infrastructure (NFVI): knowledge on the computational resources' capabilities (such as the type of CPU and memory, accelerators, etc.) along with their availability (i.e., the status and utilization level)
  - MANO system: requirements of the network slices
- Decision taken
  - NFVO: NF placement and resource allocation decisions while ensuring that the resulting resource allocation satisfies the respective slice SLA
  - VNFM: Run-time up and down scaling of resources
  - CSMF (Communication Service Management Function) and NSMF (Network Slice Management Function (NSMF): Admission control of new slices



Keynote: Resource Allocation for network slicing



Albert Banchs Professor, Carlos III University of Madrid Deputy Director, IMDEA Networks institute

Acknowledgement: The material of this tutorial and keynote speech has been based on the work that the presenter is doing in the H2020 5G-TOURS European project (Grant Agreement No. 856950).

### 5GPhD School The interventional Scientific Event Examples on 58 holy

## Keynote outline

- Research challenges with network slicing & orchestration
- Analysis of the benefits of dynamic orchestration
- Realizing dynamic orchestration with machine learning





## Designing the algorithms

- 3GPP provides the definition of the modules and the interfaces
  - However, the algorithms run by the different modules are not specified
  - The internals of the different modules are not in the scope of the standards
  - Furthermore the standards are still at a very early stage
  - Research work is required instead to fill this gap
- These are new paradigms that require completely new algorithms
  - Algorithms to determine the required resource allocation for the different VNFs to ensure that the respective SLAs with the tenants are met
  - Algorithms to determine the best location for the different VNFs
  - We need to account both for communications and for computing resources
  - Artificial Intelligence is a natural candidate for many of these problems



#### Some research results

- Resource sharing for network slicing
  - "Network slicing games: Enabling customization in multi-tenant networks", IEEE INFOCOM 2017
  - "Multi-tenant radio access network slicing: Statistical multiplexing of spatial loads", IEEE/ACM ToN 2017
- "Network Slicing Games: Enabling Customization in Multi-Tenant Mobile Networks", IEEE/ACM ToN 2019
- Resource allocation for network slicing
  - "Mobile traffic forecasting for maximizing 5G network slicing resource utilization", IEEE INFOCOM 2017
  - "RL-NSB: Reinforcement Learning-Based 5G Network Slice Broker", IEEE/ACM ToN 2019
- Admission control for network slicing
  - "Optimising 5G infrastructure markets: The business of network slicing", IEEE INFOCOM 2017
  - "Network slicing for guaranteed rate services: Admission control and resource allocation games", IEEE TWC 2018
- "A machine learning approach to 5G infrastructure market optimization", IEEE TMC 2019
- Orchestration efficiency
  - "How should i slice my network?: A multi-service empirical evaluation of resource sharing efficiency", ACM MOBICOM 2018 - "Resource sharing efficiency in network slicing", IEEE TNSM 2019
- Orchestration algorithms
  - "DeepCog: Cognitive Network Management in Sliced 5G Networks with Deep Learning," IEEE INFOCOM 2019
  - "Optimizing Resource Provisioning in Network Slicing with Al-based Capacity Forecasting", IEEE JSAC 2019
- Elastic VNFs
  - "CARES: Computation-Aware Scheduling in Virtualized Radio Access Networks" IEEE TWC 2018
- "vrAln: A Deep Learning Approach Tailoring Computing and Radio Resources in Virtualized RANs", ACM MOBICOM 2019 Orchestration architecture/implementation
- "POSENS: a practical open source solution for end-to-end network slicing", IEEE Wireless Communications 2018
- "POSENS: a practical open source solution or end-to-end network sites", IEEE Communications Magazine 2019
   "A 5G Mobile Network Architecture to Support Vertical Industries", IEEE Communications Magazine 2019

## **5G**PhD School The Interventional Extend the Extended Science in the Extended

## Focus of the keynote

- Analyzing the advantages of dynamic orchestration
  - Gains resulting from dynamically adjusting the resources allocated to different slices
  - Shows the need for devising intelligent orchestration algorithms
  - Publication at ACM MOBICOM 2018
- Design of an intelligent orchestration algorithm
  - Example of how machine learning can be used to address a mobile network problem
  - Realizing the gains resulting form the above analysis
  - In line with the MDAF module considered by 3GPP
  - Publication at IEEE INFOCOM 2019

## 5GPhD School

## Keynote outline

- Research challenges with network slicing & orchestration
- Analysis of the benefits of dynamic orchestration
- Realizing dynamic orchestration with machine learning

# 5GPhD School

## Empirical evaluation of network slicing efficiency

- Following a data driven approach we want to
  - Quantify the price paid in efficiency when suitable algorithms for dynamic resource allocation are not available, and the operator has to resort to physical network duplication
  - Evaluate the impact of sharing resources at different levels of the network, including the cloudified core, the virtualized radio access, or the individual antennas
  - Outline the benefit of dynamic resource allocation at different timescales under various slice specifications
- Methodology
  - Our approach can be used for generic kinds of resource allocation
  - Still, it is not an optimization, but rather an indication of how well slices will behave









### 5GPhD School The Internetional Economic Transformer To Stational

## Efficiency evaluation

We evaluate the efficiency of a multi-slice scenarios by comparing

• A sliced scenario in which we need to statically provision each slice with the necessary resources to meet the slice requirements

$$\mathbb{R}^{\mathbb{Z}}_{\ell,\tau} = \sum_{s \in \mathcal{S}} \sum_{c \in C_{\ell}} \sum_{n \in \mathcal{T}} \tau \cdot \hat{r}^{\mathbb{Z}}_{c,s}(n).$$

• A perfect slicing scenario, in which the exact amount of resources are shared instantaneously among all slides

$$\mathbb{P}^{\mathbb{Z}}_{\ell,\tau} = \sum_{c \in C_{\ell}} \sum_{n \in \mathcal{T}} \tau \cdot \hat{r}^{\mathbb{Z}}_{c}(n), \quad \stackrel{\bullet}{\text{--line of the larger of the set of the$$



### Efficiency example





#### School un ta 68 litely Global efficiency view f 100% $w_{1}$ 5 minutes l 6 8 9 10 11 12 Multiplexing efficiency 1 2 4 1 Large metropolis 0.8 Still, we need Medium-sized city 0.6 to double the l=1 node 0.4 resources 0.2 0 10<sup>0</sup> $10^{1}$ 10<sup>2</sup> 10<sup>3</sup> Normalized mobile traffic demand Extremely low efficiency at Multiplexing gains start to be antenna there







## **EGPhD** School The International Reductific Event Receptories to 52 International

## A model for resource deployment

The previous efficiency model is good to evaluate continuous time efficiency

• OPEX scenario (i.e., maintenance, dynamic resource assignment)

Extension of the model to consider an operator point of view

• CAPEX scenario (i.e., size of the deployed infrastructure)

$$\mathbb{R}_{\ell,\tau}^{\star\mathbb{Z}} = \sum_{s\in\mathcal{S}}\sum_{c\in\mathcal{C}_{\ell}}\max_{n\in\mathcal{T}}\left(\hat{r}_{c,s}^{\mathbb{Z}}(n)\right) \qquad \mathbb{P}_{\ell,\tau}^{\star\mathbb{Z}} = \sum_{c\in\mathcal{C}_{\ell}}\max_{n\in\mathcal{T}}\left(\hat{r}_{c}^{\mathbb{Z}}(n)\right)$$

## **5GPhD**\*School The Interventional Scientific Event Science in the Television





## **EGPhD** School The International Extension in SE Independent in SE Independent

### Takeaway messages

- Multi-service requires more resources
  - At least 20% more in the less challenging scenario
- Geography has limited impact
  - The two cities considered show similar trends
- Direction is a factor
  - Uplink is more challenging
- Moderating the requirements may not help
  - Good efficiency values are only achieved with non realistic service requirements
- Reconfiguration plays a key role
  - We need of orchestration algorithms that allow to dynamically re-allocate resources
  - Deployment cost may be mitigated: crucial for the 5G deployment

## **5GPhD** School The International Estimatic Experiments are international

## Keynote outline

- Research challenges with network slicing & orchestration
- Analysis of the benefits of dynamic orchestration
- Realizing dynamic orchestration with machine learning















## **5G**PhD School The interventional Regionality is the Regional to BE Interventional

### Conclusions

- DeepCog represents a novel data analytics tool for cognitive resources management in sliced 5G networks
- Leverages on Deep Neural Network structure
- Customized loss function employed aiming at capacity forecasting
- First work to date where DL architecture is explicitly tailored for mobile networks problem
- Extensive evaluations with real-world data show the substantial advantages provided by DeepCog

