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Requirements for 5G

High-res video streaming
(HD, 4K, 8K...)

High-capacity file download
(DVD → BD class)

High-speed transportation
(e.g. maglev/linear-motor vehicles)

Popularization of IoT
(17% annual growth rate)

Increase in traffic
(40%+ annual growth rate)

Even lower latency
(AR, fighting games, remote-
controlled medical treatment)

4G
IMT-A

5G
IMT-
2020

Practical user 
transfer speed

Peak transfer 
speed

Max. device
movement

speed
Permissible

latency
(wireless areas)

Device 
connection 

density
Area traffic 

capacity

10Mbps

1Gbps

350km/h

10ms

105/km2

0.1Mbps/m2

100Mbps~1Gbps

20Gbps

500km/h

1ms

106/km2

10Mbps/m2
Low delay (fighting games, AR)

SCMaglev (500km/h)

4.7GB 50GB
Online content 10 times the 

quality

6Mbps
High-res video streaming

25Mbps 100Mbps

Requirements heterogeneity

10 years
battery lifetime

M2M
ultra low cost

10 – 100 x
more devices

>10 Gbit/s
peak data 

rates

<1 ms radio
latency

ultra
reliability

10 000 x
more traffic

100 Mbit/s
whenever 
needed
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What is network slicing?
 Network Slice: A set of infrastructure resources and service functions that has 

attributes specifically designed to meet the needs of an industry vertical or a 
service

 Network Slicing: A management mechanism that Network Slice Provider can 
use to allocate dedicated infrastructure resources and service functions to the 
user of the Network Slice

 3GPP definition:
– “A logical network that provides specific network capabilities and network characteristics”

– “A network created by the operator customized to provide an optimized solution for a specific 
market scenario which demands specific requirements with end to end scope”

– Implemented by “slice instances”

– Created from a “network slice template”

What is network slicing?

From: J. Ordonez-Lucena, P. Ameigeiras, 
D. Lopez, J. J. Ramos-Munoz, J. Lorca 
and J. Folgueira, "Network Slicing for 5G 
with SDN/NFV: Concepts, Architectures, 
and Challenges," in IEEE 
Communications Magazine, vol. 55, no. 5, 
pp. 80-87, May 2017.
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Network slice types

 Enhanced Mobile Broadband (eMBB) to deal with hugely increased data 
volumes, overall data capacity and user density

 Massive Machine-type Communications (mMTC) for the IoT, requiring low
power consumption and low data rates for very large numbers of connected
devices

 Ultra-reliable and Low Latency Communications (URLLC) to cater for
safety-critical and mission critical applications

Slice types’ requirements
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Network Slices vs. Network Slice Instances

 Network Slice: A logical network that provides specific network capabilities and network characteristics.

 Network Slice instance: A set of Network Function instances and the required resources (e.g. compute, 
storage and networking resources) which form a deployed Network Slice.

Legend:

Network slice instances

Network functions

Network slice 1 Network slice 2 Network slice 3
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Software Defined Networking (SDN)

 Separate user plan from control plane, bringing controller to a centralized 
location

 Allow to modify the behavior of the control plane by means of “user policies”

From: McKeown et. al “OpenFlow: Enabling Innovation
in Campus Networks,” ACM CCR 2008 

Network Function Virtualization (NFV)

 Complementary technology to SDN, which depends on SDN to deliver its 
benefits

 Network Function: Building block of a communication service

 E.g., gateway, load balancer, firewall

iptables
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NFV definition

 Use technologies of IT virtualization to virtualize and connect network 
node functions

SDN

Gateway

Firewall

GatewayFirewall

Benefits of NFV
 Reduced equipment costs and reduced power consumption through 

consolidating equipment and exploiting the economies of scale of the IT 
industry

 Increased velocity of Time to Market by minimizing the typical network 
operator cycle of innovation

 Much more efficient test and integration
– Production, test and reference facilities can be run on the same infrastructure

 Targeted service introduction based on geography or customer sets is 
possible
– Services can be rapidly scaled up/down as required

– Service velocity is improved by provisioning remotely
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17

Network Fucntions (NFs)NF1 NF2 NF3 NF4 NF5

“decoding” “scheduling” “authentication” …

Virtualizing Network Functions

18

Traditional network:
network functions (NFs)

attached to node
node 1 node 2 node 3 node 4 node 5

NF1 NF2 NF3 NF4 NF5

Virtualizing Network Functions
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19

VNF1 Virtualized network
functions (VNFs)

Nodes: general
purpose processors

VNF2 VNF3 VNF4 VNF5

node 1 node 2 node 3 node 4 node 5

Virtualizing Network Functions

Orchestration of VNFs

Nodes: general purpose
processors

U C U C

U

U‐plane CN

C‐plane CN

U‐plane RAN

C‐plane RANC

U

C

U C U C

Virtual Network
Functions (VNFs)
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Virtual Network
Functions (VNFs)

Nodes: general purpose
processors

U

U‐plane CN

C‐plane CN

U‐plane RAN

C‐plane RANC

U

C

U C U C

Enhanced Mobile Broadband

Orchestration of VNFs

Nodes: general purpose
processors

U

U‐plane CN

C‐plane CN

U‐plane RAN

C‐plane RANC

U

C

U C U C

U C U C

Enhanced Mobile Broadband

U C U C

Virtual Network
Functions (VNFs)

Orchestration of VNFs
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Nodes: general purpose
processors

U

U‐plane CN

C‐plane CN

U‐plane RAN

C‐plane RANC

U

C

U C U C

Enhanced Mobile Broadband

U C U C

Virtual Network
Functions (VNFs)

Tactile Internet

U C U C

Vehicular communicacions

Orchestration of VNFs
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Motivation

 SDN and NFV have brought a revolutionary paradigm on network 
management

 This allows for enhanced network features but increases the complexity for 
the management of the network

 Moreover, new management functionality has to be provided
– Network function placement

– Resource orchestration

 Therefore, the management system in 5G needs to be heavily revisited

Management and Orchestration

 Also known as MANO or M&O

 Management

– Network Function Selection

– Network Function Configuration

– Network Function Chaining

 Orchestration

– Network Function Placement

– Resource Allocation

– Including both cloud and RAN resources
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High-level NFV framework

NFV Infrastructure (NFVI)

Hardware resources

Virtualized Network Functions (VNFs)

VNF VNF VNF VNF

Virtual
Compute

Virtual
Storage

Virtual
Network

Virtualization Layer

Compute Storage Network

NFV
Management
and
Orchestration

Services

Virtual 
resources

Physical
resources

ETSI NFV MANO Architecture

OSS/BSS

EM1 EM2 EM3 EMN

VNF1 VNF2 VNF3 VNFn

V
N
F

Hypervisor

Compute Storage Network

HW

vCompute vStorage vNetwork

SW

N
FV

I

VNF Manager 
(VNFM)

Virtualized Infrastructure 
Manager (VIM)

NFV
instances

NFV
Resources

VNF/App
Catalogue

NS
Catalogue

Os‐Ma‐Nfvo

Ve‐Vnfm‐vnf
Ve‐Vnfm‐em

Nf‐Vi

Vn‐NF

Execution Reference Points Main NFV Reference Points Other reference Points

Vi‐Vnfm
Or‐Vi

NFV‐O

Or‐Vnfm
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Service and Resource Orchestration

 5G Networks relies on two different kind of orchestration

 Resource orchestration

– Assignment to each slice of the needed resources

– Proper configuration of the associated resources (i.e., spectrum)

– No understanding of the “semantic” of the deployed VNFs

– The underlying topology is also out of the scope of resource orchestration

 Service orchestration

– Understanding the service needed by the slice and translate it into VNFs

– Also their chaining and relation shall be provided

End-to-end service Orchestration

 To orchestrate an end-to-end service, the NFV Orchestrator 
(NFVO) instantiates the network slice as follows:
– It issues the corresponding requests to the Software-Defined Networking 

(SDN) controller to instantiate connections between the different network 
nodes

– It requests the Virtualized Infrastructure Manager (VIM) to reserve the 
virtual resources at the different network nodes

– It commands the Virtual Network Function Manager (VNFM) to 
instantiate the VNFs

– It configures the VNFs and PNFs (Physical Network Functions)
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NF1 NF2 NF3

Infrastructure
Network 1

Infrastructure
Network 2

Infrastructure
Network 3

End
Point A

End
Point B

Network Function (NF) Forwarding Graph

End-to-end network service

End Point A and the Network 
Functions are interconnected by 
the Infrastructure Network 1 
(wired or wireless)

NF Forwarding Graph composed of
NF1, NF2 and NF3
Interconnected via logical links 
provided by the Infrastructure Network 
2

End Point B and the Network 
Functions are interconnected by 
the Infrastructure Network 3 
(wired or wireless)

Network ServiceEnd-to-end Network Service

Network Slice Lifecycle management

 Preparation
– Translation of slice requirements to network function chain

 Activation
– Slice kick-off on the shared infrastructure

 Runtime
– Scaling of the NF, according to the conditions

 Decommissioning
– When the service is not available anymore

Preparation
Instantiation, Configuration, and 

Activation

Pre-provision

Network environment 
preparation

Instantiation/
Configuration

Activation

Run-time Decommisioning

Termination

Lifecycle of a Network Slice Instance

De-
activation

Supervision

Reporting

ModificationDesign
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Shared and non-shared NFs
 A NSI may contain functions that are shared among network slice instances (NSIs), while 

other are dedicated
– For example, a shared AMF (Access Management Function)

 When creating a new NSI, we check if there are existing shared network functions that can 
be used for creation of a new NSI
– In this case they become shared NFs

– In the case some shared network functions are available, only additional (non-shared) network functions 
may need to be created

– The existing shared network functions may need to be reconfigured, and the resources supporting them 
may need to be added to ensure that all NSI(s) can be served

 In the case where no existing network functions are available for the new NSI, both the
shared and the non shared shall be created
– The new shared are just ”shareable”

– They only belong to the new single NSI at this point until being shared by other NSIs (where they 
become "shared")

Tutorial outline

 Network slicing

 Network Softwarization

 Network orchestration

 Data analytics and AI
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Artificial intelligence & data analytics

 AI is a computation paradigm that endows machines with intelligence
– Aiming to teach them how to work, react, and learn like humans

– Many techniques fall under this broad umbrella

 Machine learning enables the artificial processes to absorb knowledge from data and 
make decisions without being explicitly programmed
– Data needs to be collected and made availably to AI algorithms

– Machine learning is closely related to data analytics

 Machine learning has become very popular driven by:
– Modern challenges are “high-dimensional” in nature

– We have rich data sources and processing power that can be use to solve problems 

– Machine learning can be integrated into working software to support products demanded by 
industry

 In line with the rising popularity of machine learning, this tool is being widely used for 
many networking problems including 5G

Data analytics and Artificial Intelligence for Orchestration

 Artificial Intelligence is a natural choice for driving orchestration decision
– We need to make predictions, classifications and decisions based on data

 3GPP has identified this and started efforts towards defining an AI-based Data 
Analytics 
– Autonomous and efficient control, management and orchestration

 Modules defined by 3GPP to this end
– Network Data Analytics Function (NWDAF) 

– Management Data Analytics Function (MDAF)

 Standardization efforts are still ongoing
– There is no current full-blown data analytics-assisted architecture ready
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AI-based data Analytics framework

Service layer
Mobile Network 
Operator (MNO)

High‐level policies

Intent‐based 
networking

AI‐based data 
analytics framework

AI/ML algorithms

NFVO VNFM VIM NFVI

ETSI MANO

CSMF NSMF
3GPP 5G

System (5GS)

State 
info

VNF 
info

VIM 
info

NFVI 
info

Decisions

Network data & 
recommendations

NSSF PCF NRF

NWDAFMDAF

Management plane Control plane

Data analytics for the control plane

 In the control plane, analytics allow NFs to optimize their behavior at run-time, 
typically at a much faster speed than what network management and 
orchestration systems allow

 NWDAF analytics can be leveraged to improve
– Slice-level load balancing 

– Service experience and Quality of Experience (QoE)

 Examples of data analytics usage
– NSSF: Selecting the set of Network Slice instances serving a UE

– PCF: Unified policy framework to govern network behavior, including the QoS parameters 

– NRF: Selection of a NF instance when a certain NF type is needed
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Examples of data analytics for the control plane

 NSSF: Slice selection

– NWDAF: monitors both load status and service experience statistics and predictions

– Slice selection and load control functionality to decide which slice optimally serves each of the new UEs arriving 
in the network

 PCF: QoS control

– Informed by NWDAF analytics on UE and application service experience

– Adapt service QoS parameters across all UEs on a slice in such a way that the slice SLA is satisfied.

 NRF: Selection of NF instance

– Keep NF profile of all NFs belonging to a slice, including their instantaneous load

– Pre-selection step so that not only instantaneous NF load is taken into account, but also statistics and 
predictions

– Load balancing is embedded in the selection process of the new NF instance among the candidate set

Data analytics for the management plane

 Data used as input by the AI-based analytics framework
– NFV Infrastructure (NFVI): knowledge on the computational resources’ capabilities (such 

as the type of CPU and memory, accelerators, etc.) along with their availability (i.e., the 
status and utilization level)

– MANO system: requirements of the network slices

 Decision taken
– NFVO: NF placement and resource allocation decisions while ensuring that the resulting 

resource allocation satisfies the respective slice SLA

– VNFM: Run-time up and down scaling of resources

– CSMF (Communication Service Management Function) and NSMF (Network Slice 
Management Function (NSMF): Admission control of new slices
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Protocol Stack redesign

 Current protocol stack
• Designed considering that certain functions are co-located and can exchange data with no 

latency

• This has introduced temporal dependencies that limit the flexibility in the placement

 Research challenge: remove tight constraints

Current stack:

NF4

NF3

NF2

NF1







Network functions

Redesign:

VNF4

VNF3

VNF2

VNF1







Virtual Network functions

Opportunistic HARQ:

decoding
frame frame

ack

Estimation 
success prob. 

current HARQ:

decoding
frame frame

successack

Bringing resource awareness: design of elastic VNFs
• Traditional environment for wireless 

functions

– Capacity and computational load are 
known: Resources are always available

available resources

used resources
available resources
used resources

resource outage

• Environment with virtualized wireless 
functions

– Fluctuations on the capacity and load: 
resource outages may occur

Graceful performance 
degradation



06/12/2019

Designing the algorithms

 3GPP provides the definition of the modules and the interfaces
– However, the algorithms run by the different modules are not specified

– The internals of the different modules are not in the scope of the standards

– Furthermore the standards are still at a very early stage

– Research work is required instead to fill this gap

 These are new paradigms that require completely new algorithms
– Algorithms to determine the required resource allocation for the different VNFs to ensure 

that the respective SLAs with the tenants are met

– Algorithms to determine the best location for the different VNFs

– We need to account both for communications and for computing resources

– Artificial Intelligence is a natural candidate for many of these problems

Some research results
 Resource sharing for network slicing

– “Network slicing games: Enabling customization in multi-tenant networks”, IEEE INFOCOM 2017

– “Multi-tenant radio access network slicing: Statistical multiplexing of spatial loads”, IEEE/ACM ToN 2017

– “Network Slicing Games: Enabling Customization in Multi-Tenant Mobile Networks”, IEEE/ACM ToN 2019

 Resource allocation for network slicing
– “Mobile traffic forecasting for maximizing 5G network slicing resource utilization”, IEEE INFOCOM 2017

– “RL-NSB: Reinforcement Learning-Based 5G Network Slice Broker”, IEEE/ACM ToN 2019

 Admission control for network slicing
– “Optimising 5G infrastructure markets: The business of network slicing”, IEEE INFOCOM 2017

– “Network slicing for guaranteed rate services: Admission control and resource allocation games”, IEEE TWC 2018

– “A machine learning approach to 5G infrastructure market optimization”, IEEE TMC 2019

 Orchestration efficiency
– “How should i slice my network?: A multi-service empirical evaluation of resource sharing efficiency”, ACM MOBICOM 2018

– “Resource sharing efficiency in network slicing”, IEEE TNSM 2019

 Orchestration algorithms
– “DeepCog: Cognitive Network Management in Sliced 5G Networks with Deep Learning,” IEEE INFOCOM 2019

– “Optimizing Resource Provisioning in Network Slicing with AI-based Capacity Forecasting”, IEEE JSAC 2019

 Elastic VNFs
– “CARES: Computation-Aware Scheduling in Virtualized Radio Access Networks” IEEE TWC 2018

– “vrAIn: A Deep Learning Approach Tailoring Computing and Radio Resources in Virtualized RANs”, ACM MOBICOM 2019

 Orchestration architecture/implementation
– “POSENS: a practical open source solution for end-to-end network slicing”, IEEE Wireless Communications 2018

– “A 5G Mobile Network Architecture to Support Vertical Industries”, IEEE Communications Magazine 2019
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Focus of the keynote

 Analyzing the advantages of dynamic orchestration
– Gains resulting from dynamically adjusting the resources allocated to different 

slices

– Shows the need for devising intelligent orchestration algorithms

– Publication at ACM MOBICOM 2018

 Design of an intelligent orchestration algorithm
– Example of how machine learning can be used to address a mobile network 

problem

– Realizing the gains resulting form the above analysis

– In line with the MDAF module considered by 3GPP

– Publication at IEEE INFOCOM 2019

Keynote outline

 Research challenges with network slicing & orchestration

 Analysis of the benefits of dynamic orchestration

 Realizing dynamic orchestration with machine learning
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Empirical evaluation of network slicing efficiency

 Following a data driven approach we want to
• Quantify the price paid in efficiency when suitable algorithms for dynamic resource allocation 

are not available, and the operator has to resort to physical network duplication

• Evaluate the impact of sharing resources at different levels of the network, including the 
cloudified core, the virtualized radio access, or the individual antennas

• Outline the benefit of dynamic resource allocation at different timescales under various slice 
specifications

 Methodology
• Our approach can be used for generic kinds of resource allocation

• Still, it is not an optimization, but rather an indication of how well slices will behave

Slicing types

Dedicated Resources

Q

I

0000 0100 1100 1000

0001 0101 1101 1001

0011 0111 1111 1011

0010 0110 1110 1010

Antenna Spectrum RAN 
processing

Radio Resource 
Management

Edge Cloud Core Cloud

Type A Slice

Type B Slice

Type C Slice

Type D Slice

Type E Slice

Shared Resources
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Network slicing model

Discrete set of levels
• Antenna 

• Complete cloud

• Set of network nodes

Network slice specifications 
• Guaranteed time fraction

• The percentage of time the operator is engaged to fully serve a slice

• Averaging window length

• The above is meant over a set of discrete time intervals

Reconfiguration intervals
• Each slice can be re-orchestrated every interval

Network level & Aggregation

Slice a
Slice b
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Meeting slice requirements

90% 1 hour

Efficiency evaluation

We evaluate the efficiency of a multi-slice scenarios by comparing

• A sliced scenario in which we need to statically provision each slice with the necessary 
resources to meet the slice requirements

• A perfect slicing scenario, in which the exact amount of resources are shared 
instantaneously among all slides

• Ideal algorithm
• Very difficult to implement in practice
• Used in this analysis as benchmark
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Efficiency example

90% 1 hour

Empirical evaluation

Two large cities
Three months of data
Granularity in space: sector
Granularity in time: 5 minutes
38 services in total
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Global efficiency view

Extremely low efficiency at 
antenna

Multiplexing gains start to be 
there

Still, we need 
to double the 
resources

100% 5 minutes

Relaxing the constraints

Good efficiency is achieved 
by relaxing the constraints a 
lot

Still, this is a +20% in the 
resources
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Reconfiguration interval impact

Reconfiguration 
sweetspot is here

Either we allow such 
timescale, otherwise we 
don’t have much gain over 
static

A model for resource deployment

The previous efficiency model is good to evaluate continuous time efficiency

• OPEX scenario (i.e., maintenance, dynamic resource assignment)

Extension of the model to consider an operator point of view

• CAPEX scenario (i.e., size of the deployed infrastructure)
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Deployment scenario

Similar efficiency 
is achieved 

across 
aggregation levels

Takeaway messages

 Multi-service requires more resources
– At least 20% more in the less challenging scenario

 Geography has limited impact
– The two cities considered show similar trends

 Direction is a factor
– Uplink is more challenging

 Moderating the requirements may not help
– Good efficiency values are only achieved with non realistic service requirements

 Reconfiguration plays a key role
– We need of orchestration algorithms that allow to dynamically re-allocate resources

– Deployment cost may be mitigated: crucial for the 5G deployment
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Keynote outline

 Research challenges with network slicing & orchestration

 Analysis of the benefits of dynamic orchestration

 Realizing dynamic orchestration with machine learning

Capacity vs Demand forecasting
 Traditional approaches deal with demand forecasting

A traffic demand forecasting 
algorithm aims to minimize the 
error wrt to the original data, so 
underestimation is possible

A capacity forecasting algorithm 
minimizes the amount of resources 
needed to serve a given demand

cloud RAN
datacenter

DeepCog

A

B
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DeepCog

Input

tensor description of 
network slice traffic

Neural network

adapted from image
and video processing,
with 3D‐CNN encoding 

Output

tunable traffic aggregation level 
targeted by the capacity forecast

capacity
forecast

slice traffic recorded
at the antenna level forecast 

error cost

Mon Tue Wed Thu Fri Sat Sun

training

Loss function

configurable balance of 
resource overprovisioning 
and unserviced demands   

 DeepCog’s design follows a deep learning approach

t

DeepCog

9

Input

tensor description of 
network slice traffic

Neural network

adapted from image
and video processing,
with 3D‐CNN encoding 

Output

tunable traffic aggregation level 
targeted by the capacity forecast

capacity
forecast

slice traffic recorded
at the antenna level forecast 

error cost

Mon Tue Wed Thu Fri Sat Sun

training

Loss function

configurable balance of 
resource overprovisioning 
and unserviced demands   

• DeepCog’s design follows a deep learning approach
• Determines the penalty incurred when making a prediction error

• Tailored to capacity forecast problem

• It accounts for the costs resulting from

 SLA violations

 Overprovisioning

Unique system 
parameter
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DeepCog

Input

tensor description of 
network slice traffic

Neural network

adapted from image
and video processing,
with 3D‐CNN encoding 

Output

tunable traffic aggregation level 
targeted by the capacity forecast

capacity
forecast

slice traffic recorded
at the antenna level forecast 

error cost

Mon Tue Wed Thu Fri Sat Sun

training

Loss function

configurable balance of 
resource overprovisioning 
and unserviced demands   
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‐0.6‐0.3 0.3

0.4 0.7 0.2

Filter 16

0.1 1 ‐0.3

0.5 ‐1 0.8

0.6 ‐0.4 0.2

0.2 ‐1.1 0.3

0.3 1 0.6
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Filter 1

3D‐CNN 
(6x6x6)
+ ReLU

3D‐CNN
(6x6x6) 
+ ReLU

Flatten

FC1
FC2 

FC3 FC4

Number of  
clusters

64
128

32

Encoder Decoder

ReLU Linear

high correlation

datacenters

DeepCog
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Input

tensor description of 
network slice traffic

Neural network

adapted from image
and video processing,
with 3D‐CNN encoding 

Output

tunable traffic aggregation level 
targeted by the capacity forecast

capacity
forecast

slice traffic recorded
at the antenna level forecast 

error cost

Mon Tue Wed Thu Fri Sat Sun

training

Loss function

configurable balance of 
resource overprovisioning 
and unserviced demands   • Evaluation performed over 3 case studies

 Core network datacenter (470 4G eNodeBs)

Mobile Edge Computing (MEC) datacenters (70 eNodeBs each)

 C‐RAN datacenters which performs baseband processing or 
scheduling (11 eNodeBs each) 

• Real‐world demand generated by several millions of users

• Realistic scenario

 Mobile network deployed in a large metropolitan region

• 10 different services analyzed

• Orchestration occurs over 5‐minutes interval

C‐RAN

core cloud

MEC
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Results
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Naive Infocom17 Mobihoc18 MAE DeepCog
Overprovisioning SLA violations

Monetary cost minimization

• DeepCog provides an overprovisioning level (x‐axis origin) that entails a 
given monetary cost

Facebook ‐ Core Snapchat ‐MEC

Youtube – C‐RAN

DeepCog always provides 
a close‐to‐optimal

overprovisioning level
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Conclusions

 DeepCog represents a novel data analytics tool for cognitive resources 
management in sliced 5G networks

 Leverages on Deep Neural Network structure

 Customized loss function employed aiming at capacity forecasting

 First work to date where DL architecture is explicitly tailored for mobile networks 
problem

 Extensive evaluations with real-world data show the substantial advantages 
provided by DeepCog

Albert Banchs
Professor, Carlos III University of Madrid

Deputy Director, IMDEA Networks institute

Questions?

Thanks to Marco Gramaglia, Dario Bega, Cristina Marquez, Pablo Serrano, 
Xavier Costa, Marco Fiore, Vincenzo Sciancalepore, Andres Garcia‐Saavedra


