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Abstract

With network slicing, the infrastructure is divided into separate networks,
each one customized to provide a specific service. Network slicing is a key
technology to efficiently support services with very diverse requirements, such
as the ones that should support 5G networks. While the architectural work
for 5G is well advanced, and many theoretical solutions that address diverse
aspects such as resource assignment or service composition exist, the exper-
imental work lags behind. In this paper, we aim at filling this gap by de-
scribing our implementation experiences when deploying a small-scale multi-
service prototype. We consider a video streaming service and an augmented
reality service, each one provided over a different network slice, and extend
existing open-source software solutions for a better provision of them. Our
implementation showcases key features of future 5G networks, such as radio
slicing with service differentiation, support for local breakout, or multi-slice
orchestration with QoE-triggered optimization. With the core of our im-
plementation being open-source, we believe that our results will prove very
useful to researchers and practitioners working on this area of research.
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1. Introduction

While specification and documentation activities regarding the 5th gen-
eration mobile systems (5G) are progressing at a rapid speed, practical ex-
periments are progressing at a slower pace. Apart from the obvious reasons
due to the relatively high development costs, another (and partly related)
issue that precluded the prototype of mobile system is the unavailability of
resources: mobile equipment is typically expensive, and the frequency bands
are licensed. Because of this, operators were the only players that could
afford experimentation with cellular systems, while the academia was re-
stricted to technologies based on the ISM band (see e.g. [2] for a survey on
experimentation with 802.11). One technology that helped this ISM-based
experimentation is Software Defined Radio (SDR), which enables researchers
to implement all layers of a wireless protocol stack.

The use of SDR has enabled the implementation of novel access schemes
and communication paradigms (such as e.g. cognitive radio, full-duplex), but
prototypes have been limited to the lower layers of the protocol stack (i.e., the
MAC layer), the main reason being the lack of interest on developing com-
plete systems over these prototype boards, given the high development costs.
These costs are further exacerbated for the case of mobile systems, as these
are characterized by relatively complex protocol stacks (in contrast to e.g.
TCP/IP). The situation, though, has recently changed with the emergence
of software platforms based on SDR that enable instantiating a complete
mobile network, with Eurecom’s OpenAirInterface (OAI) [3] and srsLTE [4]
among the most popular initiatives. In fact, we have recently carried out
an extensive performance comparison of these platforms [5], confirming their
adequate performance for prototyping activities and their compatibility with
commercial equipment.

The availability of these open projects has levelled up the playground,
with now more players (academics, SMEs) being able to develop novel en-
hancements for cellular systems. This helps accelerating the development of
solutions for 5G networking, which will boost the running of field trials under
realistic conditions and bring better understanding about the performance of
future mobile systems. For instance, thanks to the above mentioned OAI and
srsLTE initiatives, we recently released POSENS, the first practical and com-
pletely open-source solution for end-to-end network slicing [6]. Moreover,
future 5G Networks are expected to be highly heterogeneous, for instance
by leveraging on cloud infrastructure as well. So, software that manages the
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virtual infrastructure is of paramount importance to efficiently manage mul-
tiple services at the same time. The open source community, stemming from
the work already available in the cloud computing world, pushed towards
this direction, developing highly scalable orchestrators. However, the sup-
port brought by orchestration software in the network domain is still under
heavy development.

Despite the above, the gap between theory and practice for 5G network-
ing is still large. In particular, while network slicing has been acknowledged
as a key technology to efficiently support services with very diverse require-
ments [7], there are little experimental “hands on” reports on the use of
this technology in practice. In this paper, we contribute to filling this gap
by reporting on the development and validation of a multi-slice 5G network
prototype, each slice serving a different application, and by showcasing sev-
eral features such as the reallocation of virtual network features or the use of
local breakout (LB) to minimize delays [8]. We describe the hardware used,
the software installed, and how the different building blocks are connected,
providing in this way researchers and practitioners with a “how to” guide
while reporting on our experiences and best practices for prototyping. We
believe our results provide valuable information to boost the development of
further 5G prototype initiatives.

2. Background

In this section, we first provide a short overview of the most relevant open
source solutions for the development of mobile network prototypes. Then,
we present the two services that we consider towards our implementation,
which serve to illustrate the main features of the developed platform. One
key feature of these services is that they can be dynamically re-orchestrated,
depending on the network conditions and performance experienced (as we
validate in our prototype). We finalize this section by describing the contri-
butions of the paper and its structure.

2.1. Existing open source tools for mobile networking

In order to prototype a mobile network with network slicing capabilities,
several pieces of software are needed. We can briefly summarize them as fol-
lows by drawing a rough comparison to traditional the network domains: the
Radio Access Network (RAN), the Core Network (CN) and the Management
and Orchestration (MANO) part.
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Concerning the RAN part, the most relevant solutions are OAI [3], and
the more recent srsLTE [4] from Software Radio Systems. While OAI pro-
vides an implementation of some selected 5G-NR functionality, the srsLTE

open-source project provides at the moment a platform for LTE experimen-
tation only, aligned with Rel. 10 and designed for maximum modularity.
Even though performance of OAI is better (both in terms of throughput and
resource footprint), the “smaller” source code of srsLTE makes it easier to
customize.

Regarding the CN part, the most relevant solutions are the ones associated
with the above initiatives: srsLTE has recently released srsEPC, a light-weight
CN implementation including the mobility management entity (MME), home
subscriber server (HSS) as well as packet and serving gateways (P-GW and
S-GW, respectively), while OAI provides the same elements for a basic EPC
solution.

The MANO part has received a lot of attention from both the open-source
community and the enterprises, with a variety of tools such as ONAP [9] or
OSM [10]. They all rely on a Virtual Infrastructure Manager (VIM), an
element that can be provided with solutions such as OpenStack [11]. While
these pieces of software offer the basic functionality, more advanced QoE-
aware solutions are needed to efficiently support next generation networking.

While each of these solutions provides specific elements to implement a
5G mobile network, only recently [6, 12, 13] researchers started putting pieces
together to implement end-to-end network slicing. Among very recent efforts
available in the literature that target an objective similar to ours we have the
one in [14, 15], which base their implementation on OAI instead of SRSLTE,
as we do. Finally, mention some ongoing initiative such as [16, 17], that aim
at providing a living lab for wireless network researchers. In this work, we
limit our research to small scale, locally hosted, deployments.

However, hand-on experience on such tools is still largely missing in the
literature. In this paper, we aim to fill the gap by providing details on our
experience in implementing specific elements envisioned by 5G Networking
on a real life testbed.

2.2. Novel services considered

The deployed network provides two services over two network slices, with
a focus on aspects like QoS/QoE-aware control, and NFs virtualization and
orchestration. The motivation is to feature two different network slices on the
cloud infrastructure: one with a reduced latency service and another one with
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a mobile broadband service. We show how an ETSI NFV MANO platform
can be used to deploy, manage and orchestrate different services on different
network slices, this including the dynamic re-orchestration of a particular
NS forwarding graph, and the placement of certain VNFs in the appropriate
host. In both cases, QoS/QoE aspects trigger the re-orchestration function.
The software produced for this paper is partially based on [6] and it is mostly
available on GitHub 2 3.

The two network slices are: (i) a Reduced Latency slice (i.e., URLLC),
used to read real-time physical measurements triggered by Quick Response
(QR) labels, and (ii) an enhanced Mobile Broadband (eMBB) slice, which
serves contextual captions to streaming media, according to the user profile
and surrounding context. Both slices are deployed on the same eNB and
share the same spectrum. For the CN part, each tenant (i.e., a service) runs
its own instance of the protocol stack (i.e., mobility management, gateways
and the upper layers), performing the QoE/QoS policies needed by each
scenario. 4 In the following, we describe each slice, listing the most important
orchestration-related features that have to be implemented (which will be
detailed in Section 5).

2.2.1. Service 1: Video Streaming through the eMBB slice

The first service is hosted by an eMBB slice that has been designed to pro-
vide a service consisting of enriching a video streaming signal with context-
based add-ons (e.g., subtitles or other graphical elements) depending on the
user preferences (i.e., color, language), other conditions (e.g., hearing im-
pairments) and surroundings (e.g., ambient noise). These profiles or envi-
ronmental conditions can be understood here as QoS/QoE influence factors:
a final user, for instance, can generate a trigger to explicitly request the ser-
vice according to its preferences; or certain QoS metrics could automatically
activate the service without an explicit user request.

The additional video features are activated by means of MANO pro-
cedures that dynamically add the necessary VNFs to the forwarding graph
without interrupting the video streaming. Besides the possible real-life appli-
cations of this service, our goal is to demonstrate three different orchestration-

2https://github.com/wnlUc3m
3https://github.com/bsnet
4Although we deploy a multi-tenancy case where each service belongs to a different

tenant, other multi-tenancy scenarios can be supported with our solution.
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related functionalities:
(i) On-boarding of the network service itself, i.e., the deployment of the nec-
essary VNFs driven by service descriptors where the operational layout and
requirements are defined; (ii) Dynamic update of the NS Forwarding Graph
(FG) depending on QoS/QoE measurements (QoS/QoE-awareness); (iii)
Placement of VNFs to specific compute nodes, to simulate the placement
of NFs in the edge or core cloud depending on the service requirements.

2.2.2. Service 2: Augmented Reality through an URLLC slice

The Reduced Latency use case consists of an Android application that
performs Augmented Reality (AR) using QR codes. In a real environment,
those codes may be distributed in an industrial area close to the equipment
where measurements of interest are obtained (e.g., pipes flow or pressure,
electric measurements, tank levels, etc.). On each QR code decoding, the
mobile terminal requests the corresponding information that it displays to
the user on top of the captured image. To keep delays between the User
Equipment (UE) and the information server low, the latter shall be located
close to the user, e.g. in the same element hosting the eNB, or in an edge
cloud. To this end we deploy within this application a local breakout com-
ponent that can route selected traffic directly towards an edge cloud. With
this feature, information flows are processed locally and incur into smaller
delays.

2.3. Paper contributions and structure

Thus, in this paper we describe our experience with Open Source tools in
the context of a multi-service, multi-slice softwarized network. The paper is
structured as follows: in Section 3, we describe the software components we
employed for the (Radio) Access Network. In Section 4 we detail the same
for the Core functions, while in Section 5 we discuss the software we used
for the Management and Orchestration. We then discuss some evaluation
results in Section 6 before concluding the paper in Section 7.

3. Access Network

The mobile network architecture employed in our deployment relies on a
well-known open-source software implementations of the LTE Stack: srsLTE [4]
an open source implementation of a UE and the eNB. In the following Sec-
tions we describe how we extended the software architecture to support the
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two key features of our solution, namely, (i) support for multi-slice in the ra-
dio part, providing isolation and resource differentiation across services, and
(ii) support for local breakout, which enables a more efficient implementation
of latency-critical services.

3.1. Slice-aware RAN

While the functions in the Core Network run as VNFs (as we will describe
below), because of timing considerations the network functions for the radio
part run as physical network functions (PNFs). That is, the cloudification
of RAN function is currently a very hot research topic [18]. Still, the port-
ing to real systems of real cloud RAN software is in its early stages. Our
implementation of the slice-aware RAN is based on srsLTE [4].

Although it is a full software implementation of a 3GPP RAN suite,
also srsLTE has a limited integration in the state of the art virtualization
technologies such as Virtual Machines and Containers. Similar considerations
apply for the other major open source RAN platform: OAI [3].

The srsLTE suite used for this implementation defines different classes
for the different tasks that have to be fulfilled in the RAN: (i) a common
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library that performs the encoding/decoding operations, up to the MAC;
(ii) the RLC, RRC and the PDCP layers; and (iii) specific modules for the
UE (the UE module for the data plane of the UE) and the eNB (S1AP, that
manages the connectivity for the core control plane, and GW for the GW
connectivity).

In order to support a multi-slice network, software modifications to the
srsLTE mobile network protocol stack are needed. More specifically, the RAN
has been modified to provide: (i) some means to multiplex and de-multiplex
traffic associated to the two different slices, and (ii) some means to control
the resources assigned to each slice, so the the corresponding requirements
are fulfilled, e.g., minimum throughput for a mobile broadband service. Note
that the former is a fundamental enabler as the two implemented services
share the same RAN, while each tenant can deploy its own core NF for each
service. In the following we provide two alternative implementation for the
RAN slicing solutions. In Section 3.1.1 we discuss our baseline approach for
introducing network slicing in the RAN (namely the Slice-aware shared RAN
in Figure 1). This implementation is at the basis of the subsequent evaluation
discussion provided in Sections 6. Then, in Section 3.1.2, we discuss on a
possible additional implementation (the the Slice-specific RAN in Figure 1).
Although they are alternative in the same RAN deployment, they can be
selected according to the kind of service. For instance, if two services require
a fine-grained control on the resources available to each slice, a slice specific
RAN implementation may be a better choice. Instead, a Slice-aware shared
RAN can be beneficial when different services do not require differentiation
in the access, but just in the core part of the network.

3.1.1. RAN slicing implementation

We implemented the so-called “Slice-aware shared RAN” scheme as it
is defined in [7] and represented in Figure 1. To this aim, we modified the
higher layers of the network protocol stack (i.e., PDCP and RRC) on both the
eNB and UE. Namely, we provided per slice differentiation for the common
c-plane and u-plane procedures, as follows: for the c-plane, we had to allow
two registrations against two different Non-access Stratum (NAS) instances,
so we duplicated (i.e. an instance for each slice) the UE module and the
RRC layer, which triggered two NAS connectivity requests. On the other
hand, the u-plane is multiplexed and de-multiplexed at the PDCP module,
according to the traffic final destination address. That is, by triggering two
NAS registration procedures, the UE obtains two valid IP addresses from
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each slice GW and creates two virtual network TUN interfaces (one per each
slice). Therefore, the UE can connect to two different slices at the same time.

A sketch of the proposed implementation is depicted in Figure 2. The net-
work slicing enabling modules, marked in green, provide the (de)multiplexing
functionality described above, discriminating the traffic (both control and
user plane) belonging to each slice between the slice specific modules (among
them the NAS, which is part of the core functionality explained in Section 4)
and the shared ones. This allows for a differentiation of different flows in the
core part, while keeping the radio shared, enabling enhanced orchestration
capabilities such as the one described in Section 5. More details about the
slice-aware shared RAN implementation can be found in [6].

3.1.2. An alternative implementation for RAN slicing

As shown in Figure 1, the one described above is one of the possible
options for RAN slicing. Therefore, we implemented also the “Slice Specific
RAN” one, by modifying the srsLTE platform.

Differentiating traffic at the MAC layer is a problem that has received a
broad attention in the literature in the past [19]. However, the introduction
of network slicing into MAC schedulers requires modifications that go beyond
the metrics that are usually controlled by state of the art solutions such as
the delay budget or the minimum throughput. As already discussed by [12],
network slicing aware solutions need also to take into account other factors
such as the amount of resources allotted to each slice, which are usually not
considered.
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In order to differentiate the resources given to each slice, for simplicity
we decided to introduce modifications to the Scheduler that is in charge of
assigning resources to the different UEs attached (in the following, we as-
sume that different UEs are assigned to different slices). Our motivation is
to demonstrate the feasibility of a slice-aware scheduler, by enforcing dif-
ferent resource assignment to tenants according to, e.g., some pre-defined
requirements (the means to convey these requirements are out of our scope).
For instance, if on a 5G radio access point two tenants are assigned with
concurrent slices, but one has more stringent requirements than the other, it
shall be granted a larger share of resources to fulfill them.

The scheduler is in charge of the allocation for shared time-frequency
resources among users at every time instant. In srsLTE, this module is located
in the eNB part and assigns uplink and downlink resources according to the
scheduling policy. Thus, it determines to which user the shared resources
(time and frequencies) for each TTI (in our case, 1 ms) should be allocated
for reception of Downlink Shared Channel (DL-SCH) transmissions (We refer
the reader to [4] for a thorough description of the srsLTE platform)

By default, srsLTE implements a Round Robin scheduler: commonly used
in LTE networks, UEs are given resources sequentially. When all the UE have
been assigned with Resource Blocks (RB) at least once, it starts over. In this
way, this scheduling results very simple and does not take into account e.g.
the Channel Quality Information (CQI) reported by UEs. While this has
some disadvantages in terms of spectral efficiency (as UEs with instantaneous
poor channel conditions are scheduled), it is easy to be implemented and
provides good fairness in the terms of Resource Blocks (RBs) allocation.

We decided to modify the Round Robin scheduler to implement a weighted
Round Robin, where the assignment is performed by weighting the time slot
assignment following the priority assigned to each slice. For this purpose,
we define a vector of weights W = [w1, w2, . . . , wn], where wi represents the
relative weight of slice i among the n slices served by the RAN. For instance,
W = [1, 1, 1] means that the system is serving n = 3 slices with equal weight,
while W = [2, 1] represents a system with n = 2 slices, with the first one
obtaining twice the resources than the second.

If we let l =
∑n

1 wi and Ŵ be an array that holds the cumulative sum
of W, we assign RBs in the following way. Being ti the incremental TTI
number we compute t as its modulo base l. Finally the scheduled slice i is
i = arg mini ŵi − t. In this way we assure that upon every cycle of l TTIs,
we assign resources to slices according to their relative weight W.
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Figure 3: The throughput obtained by our implementation with variable resource shares
vs share (left) and vs time (right)

We tested our implementation with the same setup we used for the eval-
uation described in Section 6, consisting of one UE and one eNB connected
through two SMA to SMA cables. The full bandwidth achievable with this
configuration is roughly 15 Mbps with good channel conditions.

We emulate the presence of other slices by leaving the resource blocks orig-
inally assigned to them blank. We then run an Iperf in downlink direction
with TCP traffic. Figure 3 shows the correctness of our software implemen-
tation in terms of throughput for different sharing options (see Figure 3a)
and along time (see Figure 3b).

In the first experiment we create 2 slices (i.e., n = 2) and assign an
increasing share to the first slice (the one that holds the UE) by modifying
the vector W. The results, shown in Figure 3a, demonstrate the effectiveness
of our implementation in correctly enforcing the amount of resources assigned
to a slice. In the second experiment, we generate a variable number of slices
and assign to them the same amount of resources. The results, depicted
in Figure 3b, show how our implementation can maintain the throughput
around the assigned level for all the duration of our tests (60s).

Although this implementation, available in our repository, is not meant
to implement a sophisticated scheduling policy with strong mathematical
guarantees, it is indeed a first step towards the open implementation of one
of the RAN slicing options depicted in Figure 1.

3.2. Local breakout

Enforcing network slicing at the RAN level (as discussed in Section 3.1)
allows to implement different per-slice data traffic management policies as
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early as the traffic flows leaves the Radio. This is of particular importance
when the considered slices have stringent latency requirements and their data
flows shall be handled at the edge. One promising solution to this problem
is Local Breakout (LB). In the following, we describe the implementation
aspects of a LB solution based on the hardware platform depicted in Figure 4.

The local breakout functionality could be deployed in different manners:
for instance by directly modifying the network configuration to support dif-
ferent Packet Data Networks (PDN) on the UE. However, deploying it as an
independent VNF results a more flexible solution, for at least two reasons:
(i) it can be maintained and upgraded separately, and (ii) it would work (in
principle) with any eNB, as it does not require any NF-specific API. This
point makes the lifecycle management of the LB software much easier, al-
lowing to deploy it on demand and at runtime. We next present the main
characteristics of our LB implementation.

3.2.1. GTP-tunnel and LB

Differently than in a Wireless Local Area Network, traffic generated by
mobile users is not routed at the device that terminates the air interface:
it is, in fact, delivered inside a GPRS Tunneling Protocol (GTP) tunnel
to the remote Gateway controlled by the user’s service provider (S/P-GW
for LTE, UPF for 5G) where it starts its journey to the destination (top
tunnel in green/dotted line in Figure 4). Return traffic is first received by
the gateway that tunnels it to the specific eNB at which the destination
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Figure 5: TEID table maintained by the LB threads: it associates TEID numbers to the
IP address of each UE. It is used for crafting GTP tunnel return packets.

UE is connected. This method facilitates accounting for roaming users but
introduces inefficiencies at the routing level.

To avoid these issues, a LB device can be set up to intercept GTP packets
earlier (bottom tunnel in red/dashed line). We report in the following the
LB architecture focusing on the mechanisms for transparently intercepting
and conveniently routing selected traffic locally.

3.2.2. LB implementation

As shown in Figure 4, the LB node has to (i) inspect tunneled packets
to extract those matching specific rules and forward them through the new
interface IF; and (ii) push packets received from IF into the tunnel.

As uplink users’ packets are embedded in UDP datagrams, the LB can
easily access both the fixed length GTP header and the original IP packet.
The GTP header is 8 byte long and contains the Tunnel endpoint identifier
(TEID), a 32-bit value that identifies the bearer to which the inner IP packet
is addressed and that is generated by the eNB/MME when the UE node con-
nects to the network (or when it requests a new service). We implemented
the tasks for intercepting and pushing packets into the tunnel and for deter-
mining the TEID values as three main threads that refer to a common TEID
table for storing/fetching TEID values:
S1 sniffer thread. When a UE requests a new service, the eNB and the
MME exchange a couple of S1 packets that carry new TEID values: one in
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downlink with the TEID decided by the MME; followed by one in uplink
carrying the TEID chosen by the eNB. The knowledge of the latter is funda-
mental to the LB for pushing downlink packets received from the IF interface
into the tunnel. We show in Figure 5 how the S1 thread correlates the two
S1 packets by using the common S1AP-ID field to create a new row in the
TEID table with the corresponding TEID values. Because of the complexity
in dissecting S1 traffic, the S1 thread forks a tshark process and uses a pipe
for receiving the TEID data from it. It is worth noting that at this stage the
IP address of the UE is not yet known: it will be discovered by the Uplink
thread as we explain next.
Uplink thread. To inspect all GTP packets going to the S/PGW, the Up-
link thread installs a rule in the netfilter framework of the LB kernel that
matches UDP packets addressed to the remote gateway. Setting NFQUEUE 5

as target allows the Uplink thread to receive all packets and decide which
must be stopped, stripped by their GTP header and injected through inter-
face IF.

When a UE bearer transmits an uplink data packet for the first time, the
thread adds the source IP address found in the packet inside the TEID table:
to this end, it looks up the corresponding row by searching the TEID UL
value extracted from the GTP packet, as shown at the bottom of Figure 5.
Downlink thread. This thread receives packets from the IF interface and
pushes them into the GTP tunnel. It first uses the destination IP address of
the packet to look up in the TEID table the value of the TEID DL field: it
then crafts a new GTP packet by copying the TEID DL value in the header
and concatenating the IP packet in the GTP payload. If no TEID DL value
is found, the thread simply drops the packet.

4. Core Network

The transition towards 5G and the application of new concepts of net-
work softwarization has pushed the standardization efforts towards a cleaner
designed of the core network with respect to the 4G/LTE. More specifically
(since Rel. 14, the last 4G one), the main CN modules implement a split
between the control plane and the user plane, distinguishing between the
Network Function devoted to c-plane functionality and the one that handles

5https://www.netfilter.org/projects/libnetfilter_queue
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u-plane. Therefore, in our implementation, we decided to leverage on this
new design paradigm, to provide an implementation of some selected func-
tionality of the 5G Core, which follows the c-/u-plane split discussed above.
Some of the code has been adapted from existing open source projects, while
other components which were not available as open source have been imple-
mented from scratch. Also this part is publicly available in our repository.

We next describe the baseline 5G Core architecture that we have de-
veloped that includes: (i) the interface towards a multi-slice capable access
network (both in the UE and eNB, such as the one described in Section 3.1),
to support end-to-end network slicing, (ii) a modularized implementation of
the Core Network, as mandated by recent 3GPP standards, and (iii) their
interfaces towards the MANO framework.

Although there are a number of initiatives providing Core Network (CN)
functionality (e.g., the ones included in OAI and srsLTE, or NextEpc6), in our
testbed we implemented most of our solutions from scratch, to take full ad-
vantage of the novel architecture designed by 3GPP, including the following
features: (i) a clean control/user plane split and, (ii) a service based archi-
tecture (SBA) for the c-plane function. Specifically, we have implemented
all the CN modules illustrated in Figure 6, including the c-plane interfaces
for the SBA (which are mandated by 3GPP). The implementation of the
SBA allows for a consumer / producer communication that enables the mod-
ularization of the core network functions. The implementation of the Access
Management Function (AMF), AUSF and User Data Management (UDM)
functions is done in Python 3 and inspired by the highly-modular design of
srsLTE, as detailed next.

6http://nextepc.org/
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4.1. User Plane Function (UPF)

This function provides the encapsulation, decapsulation, and forwarding
to the Packet Data Network. Its context consists on the current rules ap-
plied to encapsulate/decapsulate packets and to forward them. This function
has already been built to enable the standard OpenFlow protocol to deliver
the c-plane rules (i.e., the context) to the function, which simplifies the im-
plementation of the context extraction and installation primitives, as they
are very similar to the existing OpenFlow primitives. We have implemented
the UPF module building on the Open Source, OpenFlow-capable Lagopus

switch.7

4.2. Session Management Function - SMF

This c-plane function controls and configures the UPF instances on the
u-plane through the N4 interface. Thus, the context here also consists of
the rules to encapsulate/decapsulate/forward packets, in this case for all the
UPF functions controlled by the SMF. For the implementation of this mod-
ule, we leverage available SDN-capable implementations, enriching them with
mobile network functionality, and employing a Ryu Controller8 to implement
the N4 interface between the UPF and the SMF. One key feature of our im-
plementation is that the context information is stored in a separated object,
thus facilitating its extraction and installation.

4.3. Other Core functions

In our testbed we also implemented other Core network functions that
implement some selected functionality for our setup. In order to provide the
basic authentication functions we developed a tailored Python prototype of
the Authentication Server Function (AUSF), which retrieves user information
from the Unified Data Management (UDM) modules that holds all the basic
user information such as the private keys or the IMEI.

While the two modules above mostly deals with the authentication pro-
cedures, we also had to implement a lightweight version of the Access and
Mobility Management Function (AMF) which deals with the selection of the
radio access from the core perspective. While this functionality is needed for
the overall behaviour of the network, in our scenario is trivially linking the
srsLTE software with the core modules to provide connectivity.

7http://www.lagopus.org
8https://osrg.github.io/ryu/
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Figure 7: The OSM architecture (Adapted from [10])

5. Management and Orchestration

5.1. The MANO Engine

In order to implement the features envisioned by the testbed architecture
described above, we rely on an orchestration architecture based on the Open
Source MANO (OSM) orchestrator and the OpenStack VIM. OSM is one of
the leading solutions for the implementation of a fully-fledged mobile network
orchestrator that includes several components for the automatic LCM. Still,
to provide the enhanced functionality needed, substantial changes to the
OSM code and architecture are provided.

Figure 7 shows the OSM architecture, composed by several modules that
carry out the different functionality needed by an orchestration. In the fol-
lowing, we discuss the additional modules that are required for supporting
the specific features needed for our purposes.

Resource Orchestrator. This module provides the hooks towards different
VIMs supported by OSM. In the context of the testbed, we use OpenStack
as the main VIM, to manage the local Network Function Virtualisation In-
frastructure (NFVI) deployment. However, we could leverage also on other
APIs: the Amazon AWS EC2 one, to demonstrate the feasibility of a large-
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domains

scale deployment over public clouds and the Kubernetes one, to possibly
include container-based VNFs.

Network Service to VNF communications. We extend this API (that is used
to configure the VNFs in a chain) to allow more specific configurations (such
as the ones needed by the radio ones, that are PNFs) and support the VNF
relocation.

Orchestration module. the specific algorithms that trigger the network func-
tion relocation or the local breakout reside on top of the Service Orchestration
module, to use the API specifically designed for that purpose.

5.2. ETSI NFV compliancy

The diagram represented in Figure 8 shows the framework of the testbed
based on the well-known ETSI NFV [21] and 3GPP MANO architectures [22]
that are also building our one. We populated the specific modules of the
architecture with our algorithms, as specified next.
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Onboarding. This functionality encompasses all the baseline operation avail-
able in a 5G MANO system. The automatic onboarding of the two network
slices is a seamless operation that allows (i) verticals to define the require-
ments associated with each slice (in this case, high bandwidth for the eMBB
and very low latency for the URLLC) and (ii) the deployment of the VNF in
the cloud to fulfil the set of requirements. This part has specific elements of
novelties for the blueprinting. Specifically, we implemented it by using the
YAML file descriptors that are used for the definition of VNFs in OSM. More
specifically, two kinds of descriptors have to be created: one for the virtual
networks (i.e., the virtual links that span one or more VM and connect VNFs
among them) called Network Slice Descriptor (NSD, see Listing 1) and one
for the virtual appliances that run on top of them, called Virtual Network
Function Descriptor (VNFD, see Listing 2).
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Listing 1: A snippet of the Network Slice Descriptor.

vld:

# Networks for the VNFs

- id: management

name: management

short-name: management

type: ELAN

mgmt-network: "true"

vim-network-name: public

vnfd-connection-point-ref:

# Specify the constituent VNFs

# member-vnf-index-ref - entry from constituent vnf

# vnfd-id-ref - VNFD id

# NGINX

- vnfd-id-ref: cirros_vnfd_sl1

member-vnf-index-ref: "1"

vnfd-connection-point-ref: vnf-mgmt1

ip-address: 192.168.200.185

# 245_UPPER_LAYERS

- vnfd-id-ref: cirros_vnfd_sl1

member-vnf-index-ref: "1"

vnfd-connection-point-ref: vnf-mgmt2

ip-address: 192.168.200.186

# 245_UPF

- vnfd-id-ref: cirros_vnfd_sl1

member-vnf-index-ref: "1"

vnfd-connection-point-ref: vnf-mgmt3

ip-address: 192.168.200.187
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Listing 2: A snippet of the VNF Descriptor.

- id: upf

name: upf

description: UPF

count: 1

# Flavour of the VM to be instantiated for the VDU

vm-flavor:

vcpu-count: 1

memory-mb: 512

storage-gb: 5

# Image including the full path

image: "ubuntu"

interface:

# Specify the external interfaces

# There can be multiple interfaces defined

- name: eth0-mgmt3

type: EXTERNAL

virtual-interface:

type: VIRTIO

external-connection-point-ref: vnf-mgmt3

position: 1

- name: eth1-in10_0_0_3

type: EXTERNAL

virtual-interface:

type: VIRTIO

external-connection-point-ref: in10_0_0_3

position: 2

- name: eth2-in11_0_0_3

type: EXTERNAL

virtual-interface:

type: VIRTIO

external-connection-point-ref: in11_0_0_3

position: 3
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5.3. Functions beyond 3GPP

The network functions described in Section 4 provide eventually IP con-
nectivity towards the so-called Packet Data Network (PDN) that is attached
to the UPF. However, in order to provide novel 5G services (such as the ones
described in Section 2.2), additional functions besides the 3GPP ones shall
be instantiated and orchestrated by a MANO framework. For instance, an
eMBB slice may need a Content Distribution Network to be deployed or an
URLLC slice may need to leverage on Mobile Edge Computing capabilities.

5.3.1. Enriched video service

Specifically, the main feature of the eMBB network slice deployed in this
work is to provide a service that may add context-based add-ons on a live
video streaming signal, depending on the user profile, preferences, and certain
environmental conditions. These parameters are defined here as QoS/QoE
influence factors, and serve as VNFs re-orchestration triggers.

The add-ons can be subtitles, generated depending on the subscriber pref-
erences (language, colour, size, position, etc.) or other support videos, with
the sign language translation (e.g., for people with a hearing impairment).
These add-ons could be explicitly requested by the user at any time during
the video playback or triggered by environmental conditions (e.g., excessive
ambient noise), so a good synchronization between add-ons and the main
video signal is a must.

The MANO architecture and the orchestrated network functions to pro-
vide this service are depicted in Figure 9. In the Figure, the red arrows
labelled from 1 to 5 show the initial interactions, where the user request the
playback of a certain video from a client (yellow box on the right). This is
just a regular video service providing the requested video to the user, where
the Streaming Server block (bottom left) is acting just as a proxy for the
Main Videos Server (where the video files are actually stored). The video
stream pass through the Video Mixer block (orange box), which although it
does not mix the video with any other content, it helps to prevent disruptions
when add-ons are inserted.

When add-ons are requested by the user (green arrows, labelled from A
to H), the Streaming Server communicates with the MANO block, which
instantiates the Add-ons Server (green box). This server is split into two
internal blocks: the Sign Language Videos Server (which is used to provide
the sign language videos) and the Captions Server (for providing subtitles).
Once the appropriate Add-on Server is instantiated, the MANO informs the
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Streaming Server block, which sends control commands towards the Add-ons
Server (dashed line). The selected add-on (video and/or subtitle) is injected
into the Video Mixer block which delivers the mixed video signal to the final
user.

The Video Mixer block is implemented using Snowmix, an open-Source
and very-flexible command line tool for dynamically mixing live audio and
video feeds which supports overlaying video, images, texts and graphic ele-
ments as well as mixing audio [23]. All these components have been embed-
ded in a special-purpose VNF, deployed on one of the compute nodes. The
Add-ons Server is split in two VNFs, corresponding to the two blocks in the
Figure, i.e., the Captions Server and the Sign Language Videos Server. Each
VNF contains a database with the necessary caption and video files, and a
service running over TomCat [24]. The service exposes a REST API used
by the Streaming Server block to execute the necessary control commands
once the VNF instances are up and running. The Caption Server communi-
cates with the Video Mixer block using a Snowmix-specific protocol which
makes it possible to specify where and how the add-ons are placed within
the video. The Sign Language Videos Server uses ffmpeg [25] to stream the
add-on videos into the mixer.

The Main Videos Server is also an independent VNF, running over the
same compute node as previously mentioned. It contains a database with all
the possible videos the final user could access. The Streaming Server is an
independent VNF which performs three primary functions:

1. It works as a server for the end user. Specifically, it embeds an HTTP
server to what the final user can access (using a general purpose web
browser) to request the video playbacks and the available add-ons.

2. It decodes the user’s HTTP requests, implementing the logic to trigger
the instantiation of the necessary add-on server (through a request
to the MANO) and sending the necessary control commands to these
instances, and also, to the Main Videos Server.

3. It maintains a good synchronization between the main video stream
and the add-ons. Add-ons can be requested at any time by the final
user, so they must appear properly synchronized with the main video
and with a minor delay.

The MANO block (purple box in Figure 9) represents our implementation
of the MANO framework. Although not explicitly represented in Figure 9,
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it also communicates with the underlying ETSI NFVI MANO components
(i.e., NFVO, VNF Manager and VIM, embedded in the OSM platform) to
orchestrate and manage the virtual resources. This process is executed on the
Controller Node (represented in Figure 10). Finally, regarding the End-User
equipment (yellow box in the Figure), it consist of two different elements,
namely, the video player and a web browser with a GUI. The former is based
on the ffplay video player [25], while the later is developed for the end-user
to control the service.

5.3.2. Latency-triggered re-orchestration

Both network slices are orchestrated with all their VNFs (namely the
higher layers of the RAN stack, the eNB) instantiated and running in the
central cloud. The MANO system continuously collects data about the net-
work parameters of the virtual network (i.e. latency, throughput, available
and used radio resources). This is especially important for the URLLC slice,
which may have very stringent requirements on the E2E latency between
the UE and the server running in the cloud. For this reason, the delay is
constantly monitored to avoid operational glitches caused by a sudden delay
increase due to external factors, such as additional congestion in the radio
and transport, or internal ones, like a high number of UEs connected to the
server. In these cases, the orchestration framework triggers (i) a relocation
of the NFs and VR application to the edge cloud, to benefit from the reduced
latency or (ii) the offloading of some selected flows through Local Breakout.

6. Validation

6.1. Testbed setup

The platform runs on commodity hardware. More specifically: an Intel
12 Core i7-3930K PC @ 3.2 GHz with 32 GB RAM and 1 TB of storage and
two twin AMD FX 8320 eight-core processor PCs @ 3.5 GHz with 32 GB
RAM and 1 TB of local storage.

Besides the CPU, memory and storage characteristics, the main criterion
to select this hardware is to have two identical nodes, to enable the VNF
live-migration functionality. Figure 10 shows the network topology. The
twin PCs work as compute nodes in the architecture, i.e., they run some of
the VNFs (as we describe next, not all network functions will run as VNFs).
The other PC acts as both network controller and storage node. One general-
purpose switch is used to interconnect the nodes through a private isolated
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Parameter Value

Frame Type FDD
Band 7
Downlink Frequency 2.68 Ghz
Uplink Frequency 2.56 Ghz
Number of RB in Downlink 75
Tx Gain 90 dB
Rx Gain 125 dB

Table 1: Configuration of the Radio Front-end

network, while another switch is used to connect the nodes with the Internet
through an OpenVPN Server. All nodes run the Linux CentOS operating
system (release 7.2).

The radio part of our deployment is based on two USRP B210 devices
by Ettus Research9, one on the UE side and the other for the eNB. As
mentioned in Section 3.1, the network functions for the radio part run as
physical network functions (PNFs): the eNB runs on a bare metal server and
the UE runs in a laptop. As the USRP B210 features two separate antenna
ports (one for receiving and one for transmitting), we cross-connected the
two devices with SMA to SMA cables, adding 30 dB attenuators to avoid
damages. The left part of Figure 10 represents the connected radio setup.
The full configuration parameters for the radio front-end are listed in Table 1.

9https://www.ettus.com/product/details/UB210-KIT
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Phase 1. Onboarding
Time Components What Time
1.01 Network Slice Template (NEST) 7 minutes
1.02 Network Service Descriptor (NSD) 2 minutes
1.03 VNF package (VNFD) 5 minutes
Phase 2. Instantiation, Configuration and Activation
Time Components What Time
2.01 Instantiate Network Slice (NSI) 30 seconds
2.02 Instantiate & Activate Network Service (NS) 45 seconds
2.03 Instantiate & Configure VNFs in service chain (VNF) 10 seconds
2.04 Configure other NFVI elements 10 seconds
2.05 Configure SDN infrastructure 5 seconds
Phase 3. Modification
Time Components What Time
3.01 Modify Network Slice configuration 1.5 minutes
3.02 Modify Network Service configuration 2 minutes
3.03 Detect triggering condition <1 second
3.04 Modify VNF configuration in service chain <1 second

Table 2: Service Creation Time KPI

6.2. Service Creation Time

In this section we present the results achieved in our implementation
with respect to the service creation time, one of the most important pa-
rameters targeted by the major stakeholders in the 5G environment such as
5GPP [26]. Therefore in Table 2 we summarize the timings that we mea-
sured in our setup. Intervals are obtained by taking timings of the OSM or
OpenStack primitives that are used to perform the different actions, grouped
by the main lifecycle management primitives (onboarding, instantiation and
modification).

Onboarding. Here we measure the times needed to actually create the service
by uploading the YAML descriptors detailed in Section 5. Under the Network
Slice Template (NEST) we group the two sub-timings devoted for the NSD
and the VNFD. In our setup, which is limited by the available hardware
capabilities, we can successfully create the two services in around 7 minutes.
This is completely in line with the requirements set by e.g., 5G-PPP (“from
90 hours to 90 minutes”) [26].

Instantiation, Configuration and Activation. In this group we measure the
timings needed for the activation of the single VNFs that build the service
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function chain providing the services. Here (also due to the reduced size of the
Virtual Machines involved), the timings are reduced to seconds. Also, some
time is needed to configure other NFVI infrastructure such as the transport
network. We remark that the timings obtained here are a subset of the
Onboarding one. Onboarding requires more time for internal sanity checks
performed by OSM before considering the operation completed.

Modification. As discussed in Section 5, we implemented in the Network
Orchestration algorithms to perform e.g a VNF relocation (see Section 6).
While the timings related to the detection of the triggering conditions and the
decision to enforce a new orchestration policy are negligible (sub-seconds),
the time needed to prepare the network for such re-orchestration is around
a couple of minutes: similarly to onboarding, in fact, this operation requires
the preparation of VMs and additional sanity checks.

6.3. VNF re-location

One of the objectives of this multi-service deployment is to showcase ad-
vanced orchestration functionality, like a service-aware adaptive allocation
of functions to different network nodes using VNF mobility concepts. Re-
garding this, we envisioned the possibility of relocating the VNFs between
different compute nodes, which are acting as edge and central cloud nodes in
a real 5G network. For our particular case, we provide this feature by using
the so-called “live-migration” functionality offered by OpenStack (which is
our default choice for the OSM VIM). Namely, we performed two different
experiments, which we detail next.

The first one, based on the so-called “block live-migration”, just needs a
network connection from the source node to the destination. Basically, the
complete virtual machine is transmitted without service interruption. In our
specific case, VNF instances can be quite big (tens of GBs once instantiated),
so it would be necessary to have a very high bandwidth and dedicated net-
work connection to achieve fast migration times. With a common network
connection like the ones we have in our testbed the process takes times in
the range of minutes, as discussed before. Moreover, while very high band-
widths may be achievable within the same datacenter, having them available
in different geographical locations may be questionable. Furthermore, this
approach also reduces the VM processing power during the migration time,
so we considered this is not an acceptable approach for a future 5G network.
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The second possible approach is called “shared storage live migration”.
As the name states, it is based on using a shared storage which is accessible
from both, source and destination host. In this case, performance has been
quite good (in the range of few milliseconds, see entry 3.06 in Table 2),
without any service interruption.

Although the performance is quite good using the latter approach, this
shared storage node is a drawback in itself. This procedure has well-known
inconveniences, among others: (i) adding shared storage nodes requires to
design the network topology according to this; (ii) the shared storage node
becomes single point of failure; (iii) the network itself becomes a single point
of failure; (iv) the network security shall be improved as the shared storage
should be placed in a separate secured network, and (v) even with the good
performance results experienced in our demo case, the network latency could
impact performance, especially for certain scenarios which require very low
latency. However, while this aspect goes beyond the purposes of this paper,
we think these problems may be solved in different ways. They range from
reducing the size of the VMs to be migrated to the usage of containers [27] or
unikernels [28]. Another possibility is the improvement of the shared storage
option to tackle the known weaknesses, e.g., adding redundancy to the single
points of failure and improving the security.

6.4. Low latency through LB

We tested our LB implementation by running the corresponding VNF in
the slice providing the low latency service. We attached to our setup the
multi-slice UE (UE1) presented in Section 3.1 and an additional single slice
UE (UE2) that connected to the low latency slice only.

In one scenario, we co-located the AR server with the gateway, and com-
pared it with another scenario where the AR server was placed together with
the LB VNF. An additional delay of 100 ms was added between the eNB and
the gateway, to emulate the distances between edge and central cloud.

The box and whiskers plot in Figure 11 shows the delay for a UE to server
and UE to UE communications. The latter is not related to the provided
URLLC service, but it is useful to assess the performance of e.g., machine
to machine communications. As expected, the latency with the LB VNF
activated is much less than the normal case, with a median value of around
30ms and 135ms for the UE to Server case with or without LB respectively.
The gap is even higher for the UE to UE case, with median latency figures
of 55ms and 255ms respectively.
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Figure 11: Latency evaluated for the URLLC scenario.

7. Conclusion

The availability of open-source software and cheaper network hardware
opened the door for a more flexible experimentation of novel communication
paradigm such as network slicing, one of the fundamental building block
of the 5G ecosystem. Therefore, in this paper we described our hands-on
experience gained from the implementation of some distinctive functionality
of 5G Networking, (i) multi-slice orchestration, (ii) RAN slicing and (iii)
local breakout. All our software is based on open source components, and
most of it is also released as open source on public repositories. We believe
that our results together with the tools that we release will prove very useful
to researchers and practitioners working on this area of research.
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