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Abstract

The dynamic management of network resources is both a critical and challenging task in upcoming

multi-tenant mobile networks, which requires allocating capacity to individual network slices so as

to accommodate future time-varying service demands. Such an anticipatory resource configuration

process must be driven by suitable predictors that take into account the monetary cost associated to

overprovisioning or underprovisioning of networking capacity, computational power, memory, or storage.

Legacy models that aim at forecasting traffic demands fail to capture these key economic aspects of

network operation. To close this gap, we present DeepCog, a deep neural network architecture inspired

by advances in image processing and trained via a dedicated loss function. Unlike traditional traffic

volume predictors, DeepCog returns a cost-aware capacity forecast, which can be directly used by

operators to take short- and long-term reallocation decisions that maximize their revenues. Extensive

performance evaluations with real-world measurement data collected in a metropolitan-scale operational

mobile network demonstrate the effectiveness of our proposed solution, which can reduce resource

management costs by over 50% in practical case studies.

Index Terms
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I. INTRODUCTION

Network slicing is an emerging paradigm that is expected to characterize 5G and beyond-5G

mobile systems. Network slicing allows operators to tailor Virtual Network Functions (VNFs)



2

to the precise requirements of individual mobile services [1], and will be key in enabling the

unprecedented heterogeneity of future mobile applications [2]. Managing sliced networks will

represent a major challenge for operators, since this new paradigm represents a shift from the

rather limited reconfiguration possibilities offered by current Operations and Business Support

System (OSS/BSS) to a complex, software-defined control layer that must dynamically organize

thousands of slices belonging to hundreds of tenants on the same infrastructure [3].

A. Network management and capacity forecast.

To rise to the challenge, network operators must introduce substantial automation in the

presently human-driven management and orchestration (MANO) processes, ultimately realizing

the 5G principle of cognitive network management [4]. Achieving this objective requires advances

in two complementary technologies: (i) technical solutions that enable end-to-end Network

Function Virtualization (NFV), providing the flexibility necessary for resource reallocation; and,

(ii) a network intelligence that automatically identifies and anticipates demand patterns from

streaming network measurement data, and then takes decisions on how to configure VNF and

allocate resources so as to maximize the system efficiency.

From a technical standpoint, solutions that implement NFV at different network levels are

well established, and start to be tested and deployed. Examples include current MANO platforms

architectures like ETSI NFV [5], and implementations of MANO controllers such as OSM [6] or

ONAP [7] that support reconfiguring resources to VNFs on the fly. By contrast, the integration of

intelligence in cognitive mobile networks is still at an early stage. Nowadays, resource assignment

to VNFs is a reactive process, mostly based on hysteresis thresholding and aimed at self-healing

or fault tolerance. There is a need for proactive, data-driven, automated solutions that enable

cost-efficient network resource utilization, by anticipating future needs for capacity and timely

reallocating resources just where and when they are required.

The aim of our work is precisely to contribute to the definition of a network intelligence that

is adapted to a network slicing environment. More specifically, the focus of this paper is on the

design of data analytics that enable the anticipatory allocation of resources in cognitive mobile

networks. To this end, we investigate a machine learning solution that runs on traffic measurement

data and provides operators with information about the capacity needed to accommodate future

demands at each network slice – a critical knowledge for data-driven resource orchestration. We
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take a pragmatic approach, and duly account for the economic costs associated to the operation

above.

Indeed, resource orchestration decisions have a direct monetary impact for the network operator

in terms of operating expenses, which can be divided into two macroscopic categories of cost.

• Overprovisioning – when providing excess capacity with respect to the actual resource

demand, the operator incurs a cost due to the fact that it is reserving more resources than

those needed to a network entity (e.g., a network slice, a network function, or a virtual

machine). As resources are typically isolated across slices, this seizes the excess resources

from other network entities that may have possibly used them. At a global system level,

continued overprovisioning implies that the operator will have to deploy more resources

than those required to accommodate the user demand, limiting the advantage of a virtualized

infrastructure and of cognitive networking solutions in general.

• SLA violation – if insufficient resources are allocated to a network entity, users will suffer

low Quality of Service (QoS), or even discontinued service. This has an indirect price for

the operator, in terms of customer dissatisfaction and increased churning rates, which is

not simple to quantify. However, in emerging contexts such as those promoted by network

slicing, underprovisioning also entails a different, more direct and quantifiable economic

penalty for the operator. Under slicing, operators will sign Service Level Agreements (SLAs)

with the mobile service providers, which need to be strictly enforced. Underprovisioning

means violating such SLAs, which results in substantial monetary fees for the network

operator.

Clearly, the cost is not the same in the two cases, and it may also vary depending on the

specific settings, including the nature of the concerned resources, the technologies deployed in

the network infrastructure, or the market strategies of the operator. In all cases, we posit that,

once suitably modeled, such costs shall be at the core of the orchestrating decisions.

Legacy techniques for the prediction of mobile network traffic, such as the one reviewed in

Section II, fall short in this respect. Such models aim at perfectly matching the temporal behaviour

of traffic, independently of whether the anticipated demand is above or below the target, and

are thus agnostic of the aforementioned costs. As a result, they return forecasts as that depicted

in Fig. 1a, which refers to a real-world case study of YouTube video streaming traffic at a core

network datacenter. Note that no distinction is made between positive and negative erros, which

leads to substantial SLA violations covering roughly half of the observation time. The operator
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Fig. 1: Top: actual and predicted weekly demands for YouTube at a datacenter controlling 470

4G eNodeBs. Bottom: levels of overprovisioning (blue) and capacity violations (red) over time.

(a) Output of a recent deep learning predictor of mobile traffic [8]. (b) Output of DeepCog,

tailored to anticipatory network resource allocation. Figure best viewed in colors.

may then attempt to apply overprovisioning to the output provided by such a traffic predictor.

Unfortunately, legacy forecast models do not offer any insight on how large the excess resource

allocated on top of the forecast demand should be. As we will demonstrate later in the paper,

this makes such a strategy highly inefficient.

B. Paper contributions and data-driven setup

In this paper, we present DeepCog, a new mobile traffic data analytics tool that is explicitly

tailored to solve the capacity forecast problem exposed above. The design of DeepCog yields

multiple novelties, summarized as follows:

• It hinges on a deep learning architecture inspired by recent advances in image and video

processing, which exploits space- and time-independent correlations typical of mobile traffic

and computes outputs at a datacenter level;

• It leverages a customized loss function that targets capacity forecast rather than plain mobile

traffic prediction, letting the operator tune the balance between overprovisioning and demand

violations;

• It provides long-term forecasts over configurable prediction horizons, operating on a per-

service basis in accordance with network slicing requirements.
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Overall, these design principles jointly solve the problem of capacity forecast in network slicing.

This is illustrated by Fig.1b, which shows an example of the required capacity forecast by

DeepCog in a real-world case study. We remark that DeepCog is one of the very first examples

of rigorous integration of machine learning into a cognitive network management process, and

marks a difference from the common practice of embedding vanilla deep learning structures into

network operation [9]. Extensive performance evaluations with substantial measurement data

collected in an operational metropolitan-scale mobile network demonstrate the superiority of our

approach over a wide range of benchmarks based on traditional and state-of-the-art mobile traffic

predictors.

The document is organized as follows. We first provide a review of related works, and highlight

the novelty of our proposed method, in Section II. We then outline the overall framework of

DeepCog in Section III, and detail the design of its most critical component, i.e., the loss function,

in Section IV. The quality of the solution is then assessed in realistic scenarios in Section V.

Finally, we draw conclusions in Section VI.

II. RELATED WORK

Applications to networking problems of machine learning in general, and of deep learning

in particular, are starting to become popular. Artificial intelligence can indeed be applied to

solve many different problems that emerge in computer networks, as highlighted in recent

comprehensive surveys on the topic [9], [10].

In the context of network management, emerging paradigms like slicing increase substantially

the complexity of orchestrating network functions and resources, at all levels. For instance,

intelligence is needed for the admission control of new slices: as resources are limited and

slicing entails their strong isolation, this is critical to ensure that the system operates efficiently.

With potentially hundreds of slices allocated simultaneously, and a need to anticipate highly

profitable future requests, the decision space for admission control becomes so large that tradi-

tional approaches become impractical. Solutions based on deep learning architectures represent

here a viable approach [11]. Similar considerations apply to other aspects of sliced network

management, e.g., the allocation of computational resources to slices at the radio access, based

on transmission (e.g., modulation and coding scheme, channel load) and environmental (e.g.,

signal quality, hardware technology) conditions [12], or the anticipatory reservation of Physical

Resource Blocks (PRBs) to user traffic to be served in target network slices [13].
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Our specific problem relates to the orchestration of generic resources (e.g., CPU time, memory,

storage, spectrum) to slices at different network entities, which is tightly linked to mobile traffic

prediction. The literature on forecasting network traffic is in fact vast [9], [14]. Solutions to

anticipate future offered loads in mobile networks have employed a variety of tools, from

autoregressive models [15]–[17] to information theoretical tools [18], passing by Markovian

models [19] and deep learning [8], [11], [13], [20], [21]. However, we identify the following

major limitations of current predictors when it comes to supporting resource orchestration in

mobile networks.

First, predictors of mobile traffic invariably focus on providing forecasts of the future demands

that minimize some absolute error [9], [14]. This approach leads to predicted time series that

deviate as little as possible from the actual traffic time series, as exemplified in Fig. 1a for a

real-world case study. While reasonable for many applications, such an output is not appropriate

for network resource orchestration. As explained in Section I, the operator aims at provisioning

sufficient capacity to accommodate the offered load at all times, since failing to do so implies

high costs in terms of high subscribers’ churn rates, as well as significant fees for violating SLAs

signed with tenants. Yet, if an operator decided to allocate resources based on a legacy prediction

like that in Fig. 1a, it would incur into capacity violations most of the time (as illustrated in the

bottom subplot).

Second, with the adoption of network slicing, forecasts must occur at the slice level, i.e., for

specific mobile services in isolation. However, most traffic predictors are evaluated with demands

aggregated over all services – an easier problem, since aggregate traffic yields smoother and

more regular dynamics – and may not handle well the bursty, diversified traffic exhibited by each

service. The only attempts at anticipating the demands generated by specific mobile services have

been made by using multiple-input single-output (MISO) autoregressive models [22], and hybrid

prediction methods that incorporate α-stable models and sparsity with dictionary learning [18].

Third, existing machine learning predictors for mobile traffic typically operate at base station

level [8], [21]. However, NFV operations mainly occur at datacenters controlling tens (e.g., at the

mobile edge) to thousands (e.g., in the network core) of base stations. Here, prediction should be

more efficient when performed on the aggregate traffic at each datacenter, where orchestration

decisions are taken, rather than combining independent forecasts from each base station.

Our proposed solution, DeepCog, addresses all of the open problems above, by implementing

a first-of-its-kind predictor that anticipates the minimum provisioned capacity needed to cut down
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Fig. 2: Outline and interaction of the DeepCog components.

SLA violations. This closes the present gap between traffic prediction and practical orchestration,

as it provides the operator with an explicit capacity forecast that mitigates underprovisioning in

Fig. 1b while minimizing unnecessary resource reservation. We remark that early versions of the

DeepCog framework were presented in [23] and [24]. Those preliminary variants of our solution

could achieve short-term capacity forecasting over the next time step, whereas the complete

version presented in this paper supports long-term capacity prediction over a configurable number

of future time steps.

III. A DEEP LEARNING FRAMEWORK FOR RESOURCE ORCHESTRATION

The design of DeepCog is outlined in Fig. 2. Its organization is that typical of deep learning

systems, and it stems from (i) properly formatted input data used to build the forecast, which,

in our case, represents the current and past traffic associated to a specific network slice as a

tensor. Such input is fed to (ii) a deep neural network architecture that extrapolates and processes

input features to provide (iii) an output value: the capacity forecast. During the training phase,

the output is used to evaluate (iv) a loss function that quantifies the error with respect to the

ground truth, and, in DeepCog, accounts for the costs associated to resource overprovisioning

and service request denial.

In our network model, we consider that time is divided in slots, which we denote by t. Let δis(t)

be the traffic associated with slice s that is observed at base station i ∈ N and time t. A snapshot

of the demand of slice s at time t is given by a set δs(t) = {δ1s(t), . . . , δNs (t)}, and provides a
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global view of the traffic for that slice at time t across the whole network. We let N denote the set

of N base stations in the network, andM the set of M < N datacenters. Base stations are asso-

ciated to datacenters via a surjective mapping f : N →M, such that a datacenter j ∈M serves

the aggregated load of all of the associated bases stations, i.e., djs(t) =
∑

i|f(i)=j δ
i
s(t) for slice s

at time t. The set of demands across all datacenters is then given by ds(t) = {d1s(t), . . . , dMs (t)}.
Let us denote the allocated capacity for slice s at datacenter j and time t as cjs(t), and the set

of capacities at all j ∈ M as cs(t) = {c1s(t), . . . , cMs (t)}. Then, the capacity forecast problem

is that of computing a constant capacity c̄s(t, Th) = {c̄1s(t, Th), . . . , c̄Ms (t, Th)} that is allocated

in the network datacenters over a time horizon Th, i.e., through an interval between the present

time t and a future time t+ Th. In practice, this models the typical situation where the resource

reconfiguration frequency is limited (e.g., by the NFV technology), and the operator must decide

in advance the amount of resources that will stay assigned to a slice until the next reallocation

takes place. The time horizon Th thus corresponds to the reconfiguration period, and the allocated

capacity is such that cjs(t) = c̄js(t, Th) ∀j ∈M, t ∈ [t, t+ Th].

The forecast builds on knowledge of the previous Tp traffic snapshots δs(t−1), . . . , δs(t−Tp).

The quality of the capacity forecast c̄s(t, Th) is measured by means of a suitable loss function

` (c̄s(t, Th),ds(t), . . . ,ds(t+ Th)). This function `(·) determines the compound cost of over-

provisioning and underprovisioning network resources at the target datacenters, as produced

by allocating a constant capacity c̄s(t, Th) when the actual time-varying demand is in fact

ds(t), . . . ,ds(t+ Th).

Below, we present each of the components of the framework, and discuss its mapping to the

elements of a 5G network architecture running cognitive resource management.

A. The Neural Network

DeepCog leverages a deep neural network structure composed of suitably designed encoding

and decoding phases, performing a capacity forecasting prediction over a given time horizon.

The structure is general enough that it can be trained to solve the capacity forecast problem for

(i) network slices dedicated to different services with significantly diverse demand patterns, (ii)

any datacenter configuration, and (iii) any time horizon Th.

The design of the neural network structure in DeepCog is inspired by recent breakthroughs [25]

in deep learning for image and video processing. As summarized in Fig. 3, the network is

composed of an encoder that receives an input representing the mobile traffic data δs(t −
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Fig. 3: DeepCog neural network encoder-decoder structure.

1), . . . , δs(t − Tp) and maps important spatial and temporal patterns in such data onto a low-

dimensional representation. The result of the encoder undergoes a flattening process that converts

the 3D (space and time) tensor data into a unidimensional vector format. This is the input format

required by the fully connected layers that form the decoder, which then generates the final

capacity forecast c̄s(t, Th) at the target set of datacenters M. Below, we detail the encoder and

decoder implementations, and discuss the training procedure.

1) The Encoder: The encoder is composed by a stack of three three-dimensional Convolutional

Neural Network (3D-CNN) layers [26]. Generic Convolutional Neural Networks (CNNs) are a

specialized kind of deep learning structure that can infer local patterns in the feature space of

a matrix input. In particular, two-dimensional CNNs (2D-CNNs) have been extensively utilized

in image processing, where they can complete complex tasks on pixel matrices such as face

recognition or image quality assessment [27]. 3D-CNNs extend 2D-CNNs to the case where the

features to be learned are spatiotemporal in nature, which adds the time dimension to the problem

and transforms the input into a 3D-tensor. Since mobile network traffic exhibits correlated patterns

in both space and time, our encoder employs 3D-CNN layers.

Formally, the 3D-CNN layers receive a tensor input T (δs(t− 1)) , . . . , T (δs(t− Tp)), where

T (·) is a transformation of the argument snapshot into a matrix. This input is processed by three

subsequent 3D-CNN layers. Each neuron of these layers runs a filter H (
∑

τ I(τ) ∗K(τ) + b)
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where I(τ) is the input matrix passed to the neuron (e.g., I(τ) = T (δs(τ)) at the very first

layer, for slice s and generic time τ ), ∗ denotes the 3D convolution operator, K(t) is the kernel

of filters, H(·) is a non-linear activation function, and b is a bias vector. We use two different

kernel configurations K(τ), as shown in Fig. 3: a 3× 3× 3 kernel for the first 3D-CNN layer,

and a 6×6×6 kernel for the second and third layers. These settings allow limiting the receptive

field, i.e., the portion of input analyzed by each neuron, to small regions: in presence of strong

local correlation of the input data, this approach is known to yield good performance with fairly

limited training, in particular compared to Recurrent Neural Networks. As for the choice of the

activation function, many different options have been proposed in the literature, spanning from

linear functions to tanh, sigmoid or Rectified Linear Unit (ReLU). Among these, we select ReLU,

and set H(x) = max (0,x), which provides advantages in terms of discriminating performance

and faster learning [28]. Finally, b is randomly set at the beginning of each training phase.

The second and third 3D-CNN layers are interleaved with Dropout layers: such layers reg-

ularize the neural network and reduce overfitting [28] by randomly setting to zero a number

of output features from the preceding layer during the training phase. The dropout rate defines

the probability with which output features undergo this effect. During training, we employ two

Dropout layers with dropout rate equal to 0.3.

2) The decoder: The decoder uses Multi-Layer Perceptrons (MLPs) [29], a kind of fully-

connected neural layers, where every neuron of one layer is connected to every neuron of the next

layer. This provides the ability to solve complex function approximation problems. In particular,

MLPs are able to learn global patterns in their input feature space [30]. In our structure, each

layer performs an operation H′(x ·W+b), where x is the MLP layer input vector, W a weight

matrix related to the neurons of each layer, and b the bias vector. W plays a similar role to

K(t) in the encoder part: its values drive the prediction through the layers of the decoding part.

As for the activation functions H, we employ ReLU for all MLP layers except for the last one,

where a linear activation function is used since the desired output takes real values. The last linear

layer can be configured to produce multiple predictions in parallel, each matching the aggregate

capacity required by a subset of base stations, thus allowing to forecast the needed capacity for

different datacenters comprising a subset of base stations. Ultimately, this organization makes

the DeepCog neural network capable of predicting per-slice capacity requirements at datacenter

level, in a way that can adapt to any configuration of M and to any time horizon Th.
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3) The training procedure: We leverage the popular Adam optimizer, which is a Stochastic

Gradient Descent (SGD) method that provides faster convergence compared to other tech-

niques [31]. SGD trains the neural network model, evaluating at each iteration the loss function

`(·) between the forecast and the ground truth, and tuning the model parameters in order to

minimize `(·). For the configuration of the Adam optimizer, we use the default configuration

with a learning rate of 5× 10−4.

An important element that concerns the training of the DeepCog architecture is that the encoder

and the decoder described in Section III-A1 and Section III-A2 have independent roles. The

encoder extracts the relevant features from the input traffic tensors δs(t − 1), . . . , δs(t − Tp);

the decoder leverage such features to generate a capacity forecast that is tailored to a given

combination of slice, prediction time horizon, and datacenter class (e.g., datacenters deployed

close to the radio access versus datacenters co-located with the Internet gateways). Therefore,

while the decoder heavily depends on the forecast specifications, the encoder does not, and is

agnostic to the final usage of the extracted features. This fact allows adopting a transfer learning

approach during training: instead of treating the two blocks as a whole (and performing the

training over the full system for all the possible slices, datacenter classes and horizons), we can

train them separately. Specifically, an horizon-independent encoder can be trained on past traffic

tensors at maximum time granularity, and then reused in combination with dedicated decoders

tailored to each Th value. Beside reducing the training time, this strategy reduces the need for

neural-network-wide training to different settings of slice and datacenter only.

B. Arrangement of input data

The input is composed by measurement data generated in a specific network slice, and recorded

by dedicated probes deployed within the network infrastructure. Depending on the type and

location of the probe, the nature of the measurement data may vary, describing the demands in

terms of, e.g., signal quality, occupied resource blocks, bytes of traffic, or computational load on

VNFs. DeepCog leverages a set of transformations to map any type of slice traffic measurements

into a tensor format that can be processed by the learning algorithm.

The 3D-CNN layer adopted as the first stage of the decoder requires a multidimensional tensor

input. We thus need to define the transformation T (·) of each traffic snapshot into a matrix. Note

that 3D-CNN layers best perform in presence of a tensor input that features a high level of local

correlation, so that neurons operate on similar values. In image processing, where close-by pixels
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typically have high correlation, this is easily solved by treating the pixel grid as a matrix. In

line with this strategy, the current common practice in mobile network traffic prediction is to

leverage the geographical locations of the base stations, and assign them to the matrix elements

so that their spatial proximity is preserved as much as possible [8], [9]. However, this approach

does not consider that correlations in mobile service demands at a base station level do not to

depend on space, rather on land use [32]: base stations exhibiting strongly correlated network

slice traffic may be far apart, e.g., covering the different train stations within a same large city.

Thus, we aim at creating a tensor input whose neighboring elements correspond to base stations

with strongly correlated mobile service demands. To this end, we construct the mapping of base

stations into a matrix structure as follows.

• For each base station i, we define its historical time series of total traffic as τ i = {δi(1), . . . , δi(t−
1)}, where δi(t) =

∑
s δ

i
s(t). Then, for each pair i and j, we determine the similarity of

their recorded demands by computing SBDij = fSBD(τ i, τ j), where fSBD(·) is the shape-based

distance, a state-of-the-art similarity measure for time series [33]. All pairwise distances

are then stored in a distance matrix D = (SBDij) ∈ RM×M .

• We compute virtual bidimensional coordinates pi for each base station i so that the values

in the distance matrix D are respected as much as possible. Formally, this maps to an

optimization problem whose objective is minx1,...,xM
∑

i<j(‖pi − pj‖ − SBDij)2, efficiently

solved via Multi-Dimensional Scaling (MDS) [34].

• We match each point pi to an element e of the input matrix I, again minimizing the total

displacement. To this end, we: (i) quantize the virtual surface encompassing all points pi so

that it results into a regular grid of N cells; (ii) assume that each cell is an element of the

input matrix; (iii) compute the cost kie of assigning a point pi to element e as the Euclidean

distance between the point and the cell corresponding to e. We then formalize an assignment

problem with objective mina
∑

i∈N
∑

e∈I kiexie, where xie ∈ [0, 1] is a decision variable

that takes value 1 if point pi is assigned to element e, and must fulfill
∑

i∈N xie = 1 and∑
e∈I xie = 1. The problem is solved in polynomial time by the Hungarian algorithm [35].

The solution of the assignment problem is the transformation T (·) of the original base stations

into elements of the matrix I. The mapping function T (·) allows translating a traffic snapshot

δs(t) into matricial form. Applying this to snapshots at different times, δs(t− 1), . . . , δs(t−T ),

we can thus build the tensor required by the entry encoder layer in Fig. 3.
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C. The Output function

DeepCog is designed for flexibility, and can be used for different orchestration scenarios.

This is achieved thanks to an adaptable last layer of the deep neural network, and a configurable

loss function. In general, the learning algorithm returns a forecast of the capacity required to

accommodate the future demands for services associated to a specific network slice. This generic

definition of output can then be applied to different orchestration use cases that may differ in the

traffic aggregation level at which the resource configuration takes place, and/or in the frequency

at which resource reallocation can be realized.

For instance, the anticipatory assignment of baseband processing units to network slices in a

Cloud Radio Access Network (C-RAN) datacenter requires a prediction of the capacity needed

to accommodate the traffic of a few tens of base stations; instead, reserving memory resources

for a specific network slice at a core network datacenter implies forecasting capacity for the data

sessions of subscribers associated to hundreds of base stations. The output format of DeepCog

can accommodate any datacenter layout, by tailoring the last linear layer of the neural networks

to the specific requirements of the layout (as discussed in Section III-A2).

Also, as discussed previously, the time horizon over which the forecast is performed is another

relevant system parameter, which depends on NFV technology limitations and current trends in

commoditization of softwarized mobile network. When the technology limitations does not allow

frequent reconfiguration opportunities, resources need to be allocated over long periods, e.g., of

tens of minutes or even hours. In this case, forecasting over long-term horizons provides the

operator with information on the constant capacity to be allocated during long intervals. To realize

this, DeepCog operates on configurable time horizons, thanks to the flexible loss function that

we will discuss next.

IV. α-OMC

One of the key components of the system proposed in the previous section is the loss function,

denoted by `(·). This function determines the penalty incurred when making a prediction error.

In this paper, we propose a novel loss function that is tailored to the specific requirements

of the capacity forecast problem. Our design of `(·) accounts for the costs resulting from (i)

forecasting a lower value than the actual offered load, which leads to an SLA violation due to the

provisioning of insufficient resources, (ii) predicting a higher value than the actual one, which

leads to overprovisioning, allocating more resources than those needed to meet the demand. In
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Fig. 4: Cost model `′(cjs(t)− djs(t)). Left: ideal model. Right: actual implementation in (1).

order to ensure that we drive the system towards an optimal trade-off between overprovisioning

and SLA violations, over a generic time horizon Th, `(·) must account for the penalty inflicted

in each case. In what follows, we describe the design of α-OMC (Operator Monetary Cost), a

loss functions that provides DeepCog with the capability of optimizing the overall running costs

of the system.

A. Loss function design

In DeepCog, the loss function steers the behaviour of the neural network by adjusting the

weights of the neurons according to the error between the estimated value and the real one.

To achieve the objective of minimizing the overall cost, a custom loss function for the capacity

forecasting problem is composed by a term f(x, x∗) that deals with the resource overprovisioning

penalty, and a term g(x, x∗) that models the cost of resource violations. The variable x represents

the allocated resources at a given time interval, while x∗ is the real demanded load for the same

period. So the overall cost is due by the discrepancy between x and x∗ in any time horizon.

The shape of overall cost function f(x, x∗)+g(x, x∗) is depicted in Fig. 4a. A perfect algorithm

(i.e., an oracle) always keeps the system in the optimal operation point x = x∗ where no penalty

is introduced, i.e., f(x∗, x∗) = g(x∗, x∗) = 0. Of course, errors are inherent to predictions, and

it is very unlikely that the forecast perfectly matches the real demand: hence, a penalty value is

back-propagated depending on whether x is above or below the target operation point x∗.

1) g(x, x∗), a reactive approach to SLA violations: When the orchestrated resources are less

than those needed in reality (i.e., x < x∗) the network operator pays a monetary compensation

to the tenant. We assume an SLA that guarantees a proportional compensation depending on the

number of time intervals in which an operator fails to meet the requirements set by a tenant due
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to insufficient capacity allocated to the slice. Thus, SLA violations determine a fixed cost for the

operator at every time interval where the tenant demand is not satisfied. Accordingly, we let the

system learn that the operation point x∗ is actually higher than the currently estimated one by

applying a penalty β as soon as the estimation falls below the real value. The parameter β can

be customized depending on the scenario: higher values may be used for cases where reliability

is paramount (e.g., an URLLC network slice), while lower values can be applied when KPIs

are measured over longer time intervals. Higher β values are likely to bring the system toward

x > x∗, incurring hence in higher deployment costs, as discussed next.

2) f(x, x∗), a monotonically increasing cost for resource overprovisioning: While SLA vio-

lations depend on the agreements between the tenants and the operator, the overprovisioning cost

solely depends on the network operator, and more specifically on the deployment costs associated

with excess allocated capacity. We assume that such a cost grows with the amount of unused

capacity at each time interval, and model it as a positive monotonic function that is only applied

when x > x∗: the higher the resource provisioning error, the more (unnecessarily) expensive is

the deployment. The exact expression of f(x, x∗) may vary, and one could consider, e.g., linear

(i.e., f(x, x∗) = γx), super-linear (i.e., f(x, x∗) = xγ), or exponential (i.e., f(x, x∗) = eγx)

variants. For DeepCog, we design α-OMC to use a linear function, as in Fig. 4a. The parameter

γ is configurable by the operator, and represents the monetary cost of resource allocation: for

instance, resources at the edge (i.e., spectrum) are typically scarcer and more expensive to deploy

than those in a network core datacenter. Therefore, a positive error x in case of expensive (i.e.,

high γ) resources will tend to bring the system to a lower allocation, with higher risks to hit the

SLA violation zone.

3) Balancing the two cost contributions.: In general, β and γ are highly intertwined: the

amount of resources that a network operator is willing to add depends on the cost that it has to

pay when failing to meet the demands, given by β, but also on the cost associated with adding

extra resources, given by γ. In the end, what matters is the relative value of the two parameters,

rather than their absolute values. Therefore, in the following, we express the custom loss as

a function of a single paramter α .
= β

γ
. We underscore that α indicates the monetary costs of

SLA violations with respect to the overprovisioning: failing to meet the slice requirements once

costs as much as allocating α units of excess capacity. Clearly, a higher α implies relatively

higher SLA violation costs. A mobile network operator can easily set this parameter based on

its deployment costs, SLA fees, and market strategies.
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Another important remark is that the SGD method used to train the neural network does not

work with constant or step functions, and requires that the loss function be differentiable in all

its domain. We solve this problem by introducing minimum slopes of very small intensity ε for

x < x∗ and at x = x∗. We name the resulting loss function Operator Monetary Cost, which has

a single configurable parameter α. The final expression of α-OMC is

α-OMC(x, x∗) =


α− ε (x− x∗) if x ≤ x∗

α− 1
ε

(x− x∗) if x∗ < x ≤ x∗ + εα

x− x∗ − εα if x > x∗ + εα.

(1)

Fig. 4b provides a sample illustration of (1) above. This expression is employed to evaluate

the quality of the forecast over the time horizon Th in the final loss function `(·), as follows:

` (c̄s(t, Th),ds(t), . . . ,ds(t+ Th)) =
∑
j∈M

Th∑
τ=0

α-OMC
(
c̄js(t, Th), d

j
s(t+ τ)

)
. (2)

B. Correctness and convergence

We now analyze the proposed loss function in terms of (i) correctness, i.e., its capability

of achieving a performance that is close to the optimal, and (ii) convergence, i.e., the time it

requires to learn such a correct strategy.

In Fig. 5, we run DeepCog in the representative network resource management case studies

that are later detailed in Section V, where a slice is dedicated to one particular mobile service

and runs in a specific class of network datacenter. For each case study, DeepCog forecasts a

given level of capacity to be allocated which leads to an associated monetary cost. In order to

investigate the correctness of the solution, we vary the provisioned capacity by adding to or

subtracting a fixed offset from the capacity indicated by DeepCog.

The curves of Fig. 5 illustrate the variation of the monetary cost (in the y axis) as the offset

is shifted (in the x axis), where increasingly positive (respectively, negative) values on the x

axis correspond to a higher (respectively, lower) level of capacity provisioning with respect

that suggested by our solution. The results prove that DeepCog always identifies the capacity

allocation that minimizes the monetary cost for the operator under the inherently inaccurate

prediction, as both a higher and a lower level of overprovisioning leads to a greater cost. This
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Fig. 5: Monetary cost (aggregated over time and normalized by the cost of one capacity unit)

incurred when the overprovisioning level is shifted from that selected by DeepCog (at the abscissa

origin). Each plot refers to one case study, i.e., a combination of (i) mobile service associated

to a dedicated slice and (ii) datacenter type. Top row: Th = 5 minutes, bottow row: Th = 30

minutes.
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Fig. 6: Average cost versus the learning epochs, when the DeepCog neural network architecture

is trained with α-OMC, MSE and MAE loss functions.

holds under any combination1 of target mobile service, datacenter class, and system settings α

or Th, which demonstrates the high consistency of our solution in balancing costs caused by

SLA violations and overprovisioning.

1Fig. 5 shows results for α in the range [0.5, 3], and two exemplary Th values, 5 and 30 minutes. Similar curves characterize

all α values and prediction horizons (up to 8 hours) we tested.
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We next assess the convergence properties of the loss function that drives DeepCog, by

observing its behaviour over time. Specifically, we measure the normalized cost of the solution

identified by our learning algorithm, and compare it against that returned by the same neural

network trained with legacy loss functions.

Fig. 6 shows how the average normalized cost of network operation varies during the training

phase for different α, services and datacenter classes. While the α-OMC loss function minimizes

the monetary cost of the operator in less than 20 epochs, both MAE and MSE converge to a

fixed fee that grows as α increases. This confirms that classical loss functions are not effective

when dealing with capacity forecasting, resulting in high penalties for operators. The results are

consistent across all of the different configuration scenarios we tested.

V. PERFORMANCE EVALUATION

We evaluate the performance of DeepCog in realistic case studies set in an operational

mobile network providing coverage to a large metropolitan region of around 100 km2. For our

evaluation, we leverage real-world measurement data that describes the demands generated by

several millions of users in the target region for individual mobile services. The traffic demands,

expressed in bytes, are aggregated at the antenna sector level and over intervals of 5 minutes.

They were collected by a major local operator by monitoring the GPRS Tunneling Protocol

(GTP) via dedicated probes deployed at the network gateway.

We employ the measurement data to design three case studies combining several popular

mobile services and different classes of network datacenters2. Each class is defined by the network

location and number of served eNodeBs, ranging from centralized datacenters located in the

core and serving many eNodeBs to more distributed ones located in the edge and serving a

smaller number of eNodeBs. By selecting a diverse set of case studies, we can assess the

DeepCog flexibility serving heterogeneous NFV scenarios, comprising different services and

datacenter classes (C-RAN, MEC and core). In a first case study, we consider that a slice is

instantiated for the incumbent video streaming service, i.e., YouTube, at C-RAN datacenters in the

target metropolitan area, each located in proximity of the radio access and performing baseband

processing and scheduling for around ten eNodeBs. In the second case study, we look into Mobile

2The internal organization of the mobile network – hence the demand recorded at each datacenter – is inferred by adopting

the methodology proposed in [36].



19

Edge Computing (MEC) datacenters that handle the traffic of around 70 eNodeBs each, where a

dedicated slice accommodates the traffic generated by Snapchat, a favoured messaging app. The

third case study focuses on a network slice dedicated to social network services provided by

Facebook that are run at a core network datacenter controlling all 470 4G eNodeBs in the target

metropolitan area. The three case studies cover applications with diverse requirements in terms

of bandwidth and latency; also, they entail very different spatiotemporal dynamics of the mobile

traffic, as the considered services feature different loads and activity peaks [37]. In addition,

the datacenter classes we consider have dissimilar geographical coverage and aggregated traffic

volumes, as they serve the demands associated to a variable number of antennas, from ten to

several hundreds. Overall, the three case studies portray scenarios that jointly provide an adequate

picture of the performance of DeepCog under the diversified network traffic and conditions that

will characterize future mobile services.

As discussed in Section III, DeepCog outputs a capacity forecast within a variable time-horizon

Th. We measure this time in the number of steps it comprises, where each step corresponds to the

5 mins granularity of our measurement data. In our evaluation Th ranges from 5 minutes (which

maps to a next-step prediction) to 8 hours (which corresponds to a forecast with a 96 time steps

look-ahead). These are reasonable values in our context, since resource reallocation updates

in the order of minutes are typical for computational and memory resources in architectures

implementing NFV [38], and are in line with those supported by any state-of-the-art Virtual

Infrastructure Manager (VIM) [39]. Conversely, larger intervals are more suitable for operations

involving manual intervention, e.g., spectrum leasing.

In all cases, we use the previous 30 minutes of traffic (i.e., Tp = 6) as the DeepCog input,

arranged in a 47 × 10 matrix as an input. This configuration proved to yield the best results

when confronted to a number of other design strategies for the input that we explored, including

longer, shorter, or non-continuous historical data time intervals. Capacity is predicted in terms

of bytes of traffic, which is a reasonable metric to capture for resource utilization in actual

virtual network functions [40], and is independent of the exact type of resources relevant for the

mobile operator in each case study. We employ two months of mobile traffic data for training,

two weeks of data for validation and another two for the actual experiments. This setting is also

used for all benchmark approaches. All results are derived with a high level of confidence and

low standard deviation.
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Fig. 7: Comparative evaluation of DeepCog with four benchmarks in three representative case

studies. The monetary cost (normalized by the cost of one capacity unit) incurred by the operator

is split into costs due to overprovisioning (dark) and SLA violations (light). Top: α = 2. Bottom:

α = 0.5.

A. Gain over state-of-the-art traffic predictors

We first focus on the particular case of next-step prediction, i.e., Th = 5 minutes, as this

benchmark lets us compare our framework against state-of-the-art solutions that can only perform

a forecast for the following time interval. We compare DeepCog against four benchmarks: (i) a

naive technique that forecasts the future offered load by replicating the demand recorded at the

same time during the previous week; (ii) the first approach proposed to predict mobile traffic

based on a deep learning structure, referred to as Infocom17 [8]; (iii) a recent solution for

mobile network demand prediction that leverages a more complex deep neural network, referred

to as MobiHoc18 [21]; (iv) a reduced version of DeepCog, which replaces α-OMC with a legacy

Mean Absolute Error (MAE) loss function3.

The results achieved in our three reference case studies by DeepCog and by the four bench-

marks above are shown in Fig. 7. The plots report the normalized monetary cost for the operator,

broken down into the expenses for unnecessary resource allocation (i.e., overprovisioning) and

3We also experimented with other popular loss functions, e.g., Mean Squared Error (MSE), with comparable results, omitted

for space reasons.
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fees for unserviced demands (i.e., SLA violations). We observe that DeepCog yields substantially

lower costs than all other solutions. Indeed, the cost incurred by DeepCog for α = 2 ranges

between 15% (Facebook/Core) and 27% (Youtube/C-RAN) of the cost provided by the best

competitor, depending on the case study. Infocom17, as all other benchmarks, targets mobile

network traffic prediction, whereas DeepCog aims at forecasting capacity. As a result, DeepCog

balances overprovisioning and SLA violations so as to minimize operation expenses, while

Infocom17 is oblivious to such practical resource management considerations. In other words,

legacy predictors follow as closely as possible the general trend of the time series and allocate

resources based on their prediction, which leads to systematic SLA violations that are not

acceptable from a market viewpoint and determine huge fees for the operator. Instead, DeepCog

selects the appropriate level of overprovisioning that, by suitably overestimating the offered

load, minimizes monetary penalties (see Fig. 5). Indeed, even when choosing a low value such

as α = 0.5, which inflicts a small penalty for a SLA violation, the cost incurred by DeepCog is

64% of that incurred by the best performing benchmark.

B. Comparison with overprovisioned traffic prediction

In the light of the above results, a more reasonable approach to resource allocation could be

to consider a traditional mobile traffic prediction as a basis, and adding some overprovisioning

offset on top of it. In order to explore the effectiveness of such an approach, we design and

implement several variants to MAE, as follows.

A first variant adds an a-posteriori constant overprovisioning offset to the MAE output. This

strategy, referred to as MAE-post, requires selecting a value of the static offset, which is then

added to the predicted traffic. We dimension the offset as a certain percentage of the peak traffic

activity observed in the whole historical data, and set it at 5%, which we deem a reasonable

value in presence of a decently accurate prediction. Alternatively, we also consider a best-

case version of this solution, named MAE-post-best, where an a-posteriori overprovisioning is

chosen by performing an exhaustive search over all possible offset values and selecting the one

that minimizes the loss function `(·).

A second variant accounts for some level of overprovisioning in a preemptive fashion, by

introducing the offset during the deep neural network training. To this end, the MAE-pre solution

replaces the MAE loss function with a new loss function O + 1
M
∑

j∈M |cjs(t) − djs(t)|, where

O denotes the a-priori overprovisioning offset. Also in this case, we set O equal to 5% of the
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Fig. 8: Relative performance of overprovisioned traffic predictors, expressed as a percent of the

cost attained by DeepCog. Top: relative overprovisioning and SLA violations. Bottom: relative

monetary cost. Results refer to α = 2 and prediction horizons of 5 (left) and 45 (right) minutes.

peak traffic in the historical data. To compare against the best possible operation of this scheme,

we also consider a MAE-pre-best variant where O is set equal to the average overprovisioning

level provided by DeepCog for the test period.

We remark that the MAE-post-best and MAE-pre-best approaches are oracles and not feasible

in practice, since they require knowledge of the future to determine the best a-posteriori values

for the offset and the value of O, respectively. Yet, they provide a benchmark for comparing

the performance of DeepCog against optimal solutions that rely on traditional mobile network

traffic prediction.

Fig. 8 shows the relative performance of the four variants above with respect to that attained by

DeepCog, for Th = 5 min (left) and Th = 45 min (right). The figure shows the oveprovisioned

capacity, unserviced traffic, and total economic cost incurred by the operator relative to the

performance offered by DeepCog (in percentage). For Th = 5 min, the results highlight how using

a static overprovisioning in combination with a tradition traffic prediction is largely suboptimal,

both when the additional offset is considered preemptively or a-posteriori. Indeed, the two

practical solutions considered, i.e., MAE-post and MAE-pre, cause SLA violations that are two- to

three-fold more frequent than that incurred into by DeepCog, resulting in an economic cost that

is 140% to 400% higher. Interestingly, even when parametrized with the best possible offsets,
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the approaches based on legacy traffic prediction cannot match the performance of DeepCog:

MAE-post-best and MAE-pre-best dramatically reduce the penalties of their viable counterparts,

yet lead to monetary costs that are up to 60% higher than those of DeepCog.

The results for Th = 45 min4, show that the above considerations hold across different values

of the prediction horizon.The advantage over feasible overprovisioned traffic predictors such as

MAE-pre or MAE-post is aligned with that observed under a next-step prediction, as such solutions

increase the overall cost by 188% to 236%. When considering a long horizon of 45 minutes,

oracle methods based on overprovisioning like (i.e., MAE-pre-best and MAE-post-best) can

outperform DeepCog, further reducing the operator cost by 19% to 30%. This is due to the fact

that, when prediction must be performed with significant time advance, the accuracy of DeepCog

cannot be as high as an oracle that knows future demand and has hence a significant advantage.

However, even under such conditions DeepCog performs almost as good as the oracles or better.

We conclude that traffic predictors – no matter how they are enhanced – are not appropriate

for the capacity forecast problem, for the simple reason that they are designed for a different

purpose. Indeed, they ignore the economic penalties incurred by SLA violations, and this limits

drastically their ability to address this problem. Strategies that rely on integrating such costs into

the solution after the traffic prediction is performed are largely suboptimal.

C. Controlling resource allocation trade-offs with the α parameter of DeepCog

As discussed in Section IV, DeepCog addresses a fundamental trade-off between overprovi-

sioning and SLA violations, aiming to find the best possible compromise between the two. An

operator is given the flexibility of choosing the desired operation point within this trade-off,

by suitably setting the α parameter. In the following, we carry out an extensive analysis of

the trade-off between overprovisioning of resources and failing to meet service demands. This

study is conducted for a large number of practical scenarios that extend the original three case

studies considered in the comparative analysis. Specifically, we select five different network

slices, dedicated to the same number of popular mobile services: the three we already studied,

i.e., YouTube, Facebook, and Snapchat, plus iTunes and Instagram. We then investigate the

performance of DeepCog when such slices are deployed at the three classes of datacenters

4Note that, in order to perform a fair comparison, we had to extended the MAE policy to compute the average absolute error

on each time slot in the [t, . . . , t+ Th] interval.
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introduced before, i.e., at the C-RAN, MEC, and network core. Overall, this leads to 15 distinct

scenarios.
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Fig. 9: Tradeoff between resource overprovisioning (expressed as a percentage of the actual

demand) and SLA violation (expressed as a percentage of time slots), as a function of the α

parameter. Results refer to 15 different scenarios, and two values of the prediction horizon Th,

i.e., 5 minutes (a) and 120 minutes (b).

Fig. 9a shows results in all of the above settings under different economic strategies that

are reflected by the α parameter of the loss function `(·). Configurations range from policies

that prioritize minimizing overprovisioning over avoiding SLA violations (α = 0.5) to others

that strictly enforce the SLAs at the price of allocating additional resources (α = 5). The

plots tell apart the contribution of the two components that contribute to the total monetary

cost: overprovisioning is expressed as a percentage of the actual demand, and SLA violations

are measured as a percentage of the time slots in the test period. As expected, higher α values

reduce the number SLA violations, as they become increasingly expensive; this occurs at the cost

of provisioning additional capacity, which becomes instead cheaper in proportion. The trend is
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Fig. 10: Monetary cost (normalized by the cost of one capacity unit) incurred by the operator,

versus the prediction time horizon Th. The plots refer to different combinations of datacenter

class and economic strategies modelled by α, for a slice dedicated to the YouTube mobile service.

consistent across all scenarios, confirming that α effectively drives resource orchestration towards

the desired operation point.

Our analysis also reveals that the level of overprovisioning grows as one moves from datacen-

ters in the network core outwards. The phenomenon is observed for all studied slices, and is due

to the fact that more centralized datacenters serve an increasingly aggregate traffic that is less

noisy and easier to predict. Under such conditions, DeepCog needs a lower level of additional

capacity to limit unserviced demands; indeed, the amount of SLA violations is typically lower

at core datacenters.

Fig. 9a refers to a short-term prediction for Th = 5 minutes, however the same trends

discussed above are confirmed for larger prediction horizons. For instance, Fig. 9b reports the

same results for Th = 120 minutes. The only remarkable difference is that overprovisioning and

SLA violations are higher than in the case of a 5-minute prediction, as forecasting on larger

time horizons is obviously harder. Yet, the impact of α is equivalent to that observed for Th = 5

minutes. We analyze in more detail the performance of DeepCog as a function of Th in the next

section.

D. Long-term capacity prediction with DeepCog

DeepCog aims at forecasting the (constant) capacity that should be allocated over a long-

term horizon, so as to minimize the monetary cost incurred by the operator. As discussed in

Section III, this is particularly useful in practical settings where the NFV technology imposes
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limits on the frequency upon which resources can be reallocated. In this section, we thoroughly

study how the performance of DeepCog varies with the prediction horizon.

Fig. 10 summarizes the overall trend of the monetary cost incurred by DeepCog, as the

periodicity of the reconfiguration opportunities ranges from 5 minutes to 8 hours. The plots

outline a diversity of scenarios, combining different datacenter classes (C-RAN, MEC, and core)

and relative expenses of overprovisioning and SLA violations (α equal to 0.5, 2, and 5). The

results correspond to the case where one slice is dedicated to the traffic generated by YouTube,

but equivalent behaviors were observed for the other services. In all settings, the cost grows with

the prediction horizon, which, as already mentioned, is largely expected. What is less expected,

however, is the quasi-linear relationship between the cost and Th. This is a very important result,

as it shows that even if we increase the intervals for resource reallocation (i.e., the time horizon),

the economic expenses of the operator remain bounded and do not skyrocket (as they would if

the growth was, e.g., exponential). The result thus demonstrates the efficiency of DeepCog in

limiting the unavoidable increased penalty associated to forecasting long-term capacity: as an

indicative figure, the cost is roughly increased by two when moving from a 5-minute prediction

to one that spans the following 8 hours which is a very reasonable factor.

The impact of the other system parameters is in line with our previous analysis: higher

monetary fees for SLA violations (i.e., higher α values) lead to increased costs, whereas the per-

formance is comparable across resource allocations over different classes of datacenter (C-RAN,

MEC and core), each corresponding to different traffic volumes. It is nonetheless interesting to

note that the property of a linear growth of the cost over Th is preserved under any combination

of such parameters.

Fig. 10 also offers a breakdown of the overall monetary costs into the two contributions

(overprovisioning and SLA violations). Violations of SLAs yield substantially higher absolute

costs and dominate the increase of total cost with Th; the effect is clearly stronger for higher

values of α. A more detailed view that highlights the exact evolution of the two cost components

as a function of Th is provided in Fig. 11, showing that both contribute to increasing costs over

longer-term forecasts. However, and interestingly, the dynamics of the two components with Th

are diverse depending on the system settings such as the datacenter class and the value of α. The

common trend here is that the penalty associated with both overprovisioning and SLA violations

is fairly stable when the horizon is increased from 5 minutes up to two hours. For forecasts

beyond two hours, however, these fees (one of the two or both) tend to increase substantially
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Fig. 11: Breakdown of monetary costs into two contributions: (i) overprovisioning (expressed as

a percentage of the actual demand) and (ii) SLA violations (expressed as a percentage of time

slots), in the scenarios of Fig. 10.
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Fig. 12: Illustrative examples of the capacity forecast returned by DeepCog behaviour under

different prediction time horizons. he scenario refers to a network slice dedicated to the YouTube

mobile service that is deployed at a core datacenter, under α = 2.

with Th.

We ascribe these behaviors to (i) the relationship between Th and the timescale of temporal

fluctuations in the input demand, and (ii) the way DeepCog reacts to the problem of devising

a capacity forecast, which becomes harder for larger Th values. The first point relates to the

characteristics of the input data (see Fig. 12 for illustrative examples of the temporal oscillation

of the service demand). For very large Th (above 120 minutes) the prediction task performed
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by DeepCog resorts to an “envelope” of the demand that accommodates the peak over the Th

period. This means that for those times where demand is below the peak, we incur a high level

of overprovisioning that increases the resulting cost. In contrast, smaller Th allow to adapt the

capacity forecasting to the actual demand at each point in time, providing an advantage in terms

of cost. The second point relates to the behavior and performance of DeepCog under large Th

values. DeepCog aims at providing a similar level of overprovisioning over time, as exemplified

by the top three plots of Fig. 12. For large Th values this yields increased SLA violations, since

the oscillations make it more likely that the constant capacity falls below the demand curve at

some point during Th. Additionally, larger Th values make the prediction task inherently harder,

which further contributes to increasing the SLA violations costs.

VI. CONCLUSIONS

In this paper we presented and evaluated DeepCog, an original data analytics tool for the

cognitive management of resources in sliced 5G networks. DeepCog tackles the novel problem

of capacity forecasting, whose solution is key to the sustainable operation of future multi-tenant

mobile networks. Inspired by recent advances in deep learning for image and video processing,

DeepCog hinges upon a deep neural network structure, which analyzes antenna-level demand

snapshots for different services in order to provide a prediction of the resources that the operator

has to allocate to accommodate the future load. The operation is performed for individual mobile

services separately, and over a configurable time horizon. At the core of DeepCog there is α-

OMC, a new and customized loss function that drives the deep neural network training so as to

minimize the monetary cost contributed by two main deployment fees, i.e., overprovisioning and

SLA violation. Ours is, to the best of our knowledge, the only work to date where a deep learning

architecture is explicitly tailored to the problem of anticipatory resource orchestration in mobile

networks. The solution presented in this paper thus represents a first attempt to integrate data

analytics based on machine learning into an overall cognitive management framework. Thorough

empirical evaluations with real-world metropolitan-scale data show the substantial advantages

granted by DeepCog over state-of-the-art predictors and other automated orchestration strategies,

providing a first analysis of the practical costs of heterogeneous network slice management across

a variety of case studies.
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